{"id":"https://openalex.org/W2896487916","doi":"https://doi.org/10.1145/3240508.3240671","title":"Connectionist Temporal Fusion for Sign Language Translation","display_name":"Connectionist Temporal Fusion for Sign Language Translation","publication_year":2018,"publication_date":"2018-10-15","ids":{"openalex":"https://openalex.org/W2896487916","doi":"https://doi.org/10.1145/3240508.3240671","mag":"2896487916"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3240508.3240671","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087073456","display_name":"S. Wang","orcid":"https://orcid.org/0000-0002-0397-8456"},"institutions":[{"id":"https://openalex.org/I16365422","display_name":"Hefei University of Technology","ror":"https://ror.org/02czkny70","country_code":"CN","type":"education","lineage":["https://openalex.org/I16365422"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuo Wang","raw_affiliation_strings":["Hefei University of Technology, Hefei,Anhui, China"],"affiliations":[{"raw_affiliation_string":"Hefei University of Technology, Hefei,Anhui, China","institution_ids":["https://openalex.org/I16365422"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059530979","display_name":"Dan Guo","orcid":"https://orcid.org/0000-0003-2594-254X"},"institutions":[{"id":"https://openalex.org/I16365422","display_name":"Hefei University of Technology","ror":"https://ror.org/02czkny70","country_code":"CN","type":"education","lineage":["https://openalex.org/I16365422"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dan Guo","raw_affiliation_strings":["Hefei University of Technology, Hefei,Anhui, China"],"affiliations":[{"raw_affiliation_string":"Hefei University of Technology, Hefei,Anhui, China","institution_ids":["https://openalex.org/I16365422"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046805800","display_name":"Wengang Zhou","orcid":"https://orcid.org/0000-0003-1690-9836"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wen-gang Zhou","raw_affiliation_strings":["University of Science and Technology of China, Hefei,Anhui, China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei,Anhui, China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003217535","display_name":"Zheng-Jun Zha","orcid":"https://orcid.org/0000-0003-2510-8993"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zheng-Jun Zha","raw_affiliation_strings":["University of Science and Technology of China, Hefei,Anhui, China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei,Anhui, China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100377147","display_name":"Meng Wang","orcid":"https://orcid.org/0000-0002-3094-7735"},"institutions":[{"id":"https://openalex.org/I16365422","display_name":"Hefei University of Technology","ror":"https://ror.org/02czkny70","country_code":"CN","type":"education","lineage":["https://openalex.org/I16365422"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Meng Wang","raw_affiliation_strings":["Hefei University of Technology, Hefei,Anhui, China"],"affiliations":[{"raw_affiliation_string":"Hefei University of Technology, Hefei,Anhui, China","institution_ids":["https://openalex.org/I16365422"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.958,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":91,"citation_normalized_percentile":{"value":0.999171,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9726,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/connectionism","display_name":"Connectionism","score":0.569746},{"id":"https://openalex.org/keywords/continuous-recognition","display_name":"Continuous Recognition","score":0.546236},{"id":"https://openalex.org/keywords/spatiotemporal-features","display_name":"Spatiotemporal Features","score":0.523404},{"id":"https://openalex.org/keywords/multiple-object-tracking","display_name":"Multiple Object Tracking","score":0.513586},{"id":"https://openalex.org/keywords/temporal-convolutional-networks","display_name":"Temporal Convolutional Networks","score":0.503657},{"id":"https://openalex.org/keywords/visual-tracking","display_name":"Visual Tracking","score":0.502405},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4762259},{"id":"https://openalex.org/keywords/fusion-mechanism","display_name":"Fusion mechanism","score":0.4751368},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature engineering","score":0.43706685},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41607797}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8044341},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6245697},{"id":"https://openalex.org/C8521452","wikidata":"https://www.wikidata.org/wiki/Q203790","display_name":"Connectionism","level":3,"score":0.569746},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4762259},{"id":"https://openalex.org/C173414695","wikidata":"https://www.wikidata.org/wiki/Q5510276","display_name":"Fusion mechanism","level":4,"score":0.4751368},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.4496744},{"id":"https://openalex.org/C139676723","wikidata":"https://www.wikidata.org/wiki/Q1193832","display_name":"Sign (mathematics)","level":2,"score":0.4428325},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.43706685},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.41911665},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.41905743},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41607797},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.3923846},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32803145},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3147279},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.23675466},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C103038307","wikidata":"https://www.wikidata.org/wiki/Q6556360","display_name":"Lipid bilayer fusion","level":3,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3240508.3240671","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.76,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1506441995","https://openalex.org/W1522734439","https://openalex.org/W1573040851","https://openalex.org/W1586939924","https://openalex.org/W1686810756","https://openalex.org/W1895577753","https://openalex.org/W2015551990","https://openalex.org/W2031213082","https://openalex.org/W2064675550","https://openalex.org/W2097117768","https://openalex.org/W2117853077","https://openalex.org/W2121227244","https://openalex.org/W2127141656","https://openalex.org/W2139501017","https://openalex.org/W2143612262","https://openalex.org/W2145835757","https://openalex.org/W2146221819","https://openalex.org/W2163605009","https://openalex.org/W2188882108","https://openalex.org/W2194775991","https://openalex.org/W2463640844","https://openalex.org/W2470673105","https://openalex.org/W2498094064","https://openalex.org/W2510642588","https://openalex.org/W2515446175","https://openalex.org/W2516844836","https://openalex.org/W2550143307","https://openalex.org/W2587277634","https://openalex.org/W2746301562","https://openalex.org/W2759302818","https://openalex.org/W2776541261","https://openalex.org/W2788334925","https://openalex.org/W2807840688","https://openalex.org/W2949117887","https://openalex.org/W2963398599","https://openalex.org/W2963616706","https://openalex.org/W2964184470","https://openalex.org/W2964241990","https://openalex.org/W2964253156","https://openalex.org/W383440803"],"related_works":["https://openalex.org/W4205841273","https://openalex.org/W4205525690","https://openalex.org/W350032239","https://openalex.org/W2604685715","https://openalex.org/W2412160900","https://openalex.org/W2136453575","https://openalex.org/W1997922073","https://openalex.org/W1761388607","https://openalex.org/W1732468982","https://openalex.org/W1596913645"],"abstract_inverted_index":{"Continuous":[0],"sign":[1,20,36],"language":[2],"translation":[3],"(CSLT)":[4],"is":[5],"a":[6,27,44,51,56,64,116,175],"weakly":[7],"supervised":[8],"problem":[9],"aiming":[10],"at":[11],"translating":[12],"vision-based":[13],"videos":[14],"into":[15],"natural":[16],"languages":[17],"under":[18,154],"complicated":[19],"linguistics,":[21],"where":[22],"the":[23,39,71,88,99,125,155,178,183],"ordered":[24],"words":[25],"in":[26,38],"sentence":[28],"label":[29],"have":[30],"no":[31],"exact":[32],"boundary":[33],"of":[34,50,102,127,185],"each":[35,128],"action":[37],"video.":[40],"This":[41],"paper":[42],"proposes":[43],"hybrid":[45],"deep":[46,137],"architecture":[47],"which":[48,181],"consists":[49],"temporal":[52,77,93,119],"convolution":[53],"module":[54,61,67],"(TCOV),":[55],"bidirectional":[57],"gated":[58],"recurrent":[59],"unit":[60],"(BGRU),":[62],"and":[63,104,136,172],"fusion":[65,120,141],"layer":[66],"(FL)":[68],"to":[69,106,123,145,161],"address":[70],"CSLT":[72],"problem.":[73],"TCOV":[74,103],"captures":[75],"short-term":[76],"transition":[78,91],"on":[79,174],"adjacent":[80],"clip":[81],"features":[82],"(local":[83],"pattern),":[84],"while":[85],"BGRU":[86,105],"keeps":[87],"long-term":[89],"context":[90],"across":[92],"dimension":[94],"(global":[95],"pattern).":[96,112],"FL":[97],"concatenates":[98],"feature":[100],"embedding":[101],"learn":[107],"their":[108],"complementary":[109],"relationship":[110],"(mutual":[111],"Thus":[113],"we":[114],"propose":[115],"joint":[117,132],"connectionist":[118],"(CTF)":[121],"mechanism":[122],"utilize":[124],"merit":[126],"module.":[129],"The":[130],"proposed":[131,187],"CTC":[133,156],"loss":[134],"optimization":[135],"classification":[138],"score-based":[139],"decoding":[140],"strategy":[142],"are":[143,170],"designed":[144],"boost":[146],"performance.":[147],"With":[148],"only":[149],"once":[150],"training,":[151],"our":[152,186],"model":[153],"constraints":[157],"achieves":[158],"comparable":[159],"performance":[160],"other":[162],"existing":[163],"methods":[164],"with":[165],"multiple":[166],"EM":[167],"iterations.":[168],"Experiments":[169],"tested":[171],"verified":[173],"benchmark,":[176],"i.e.":[177],"RWTH-PHOENIX-Weather":[179],"dataset,":[180],"demonstrate":[182],"effectiveness":[184],"method.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2896487916","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":17},{"year":2022,"cited_by_count":20},{"year":2021,"cited_by_count":21},{"year":2020,"cited_by_count":13},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-05T08:01:15.113244","created_date":"2018-10-26"}