{"id":"https://openalex.org/W2808978508","doi":"https://doi.org/10.1145/3219819.3220044","title":"Sketched Follow-The-Regularized-Leader for Online Factorization Machine","display_name":"Sketched Follow-The-Regularized-Leader for Online Factorization Machine","publication_year":2018,"publication_date":"2018-07-19","ids":{"openalex":"https://openalex.org/W2808978508","doi":"https://doi.org/10.1145/3219819.3220044","mag":"2808978508"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3219819.3220044","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042512583","display_name":"Luo Luo","orcid":"https://orcid.org/0009-0000-3641-8992"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Luo Luo","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100691215","display_name":"Wenpeng Zhang","orcid":"https://orcid.org/0000-0002-7018-930X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenpeng Zhang","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100393616","display_name":"Zhihua Zhang","orcid":"https://orcid.org/0000-0003-3165-5213"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]},{"id":"https://openalex.org/I4210096250","display_name":"Beijing Institute of Big Data Research","ror":"https://ror.org/00s1sz824","country_code":"CN","type":"facility","lineage":["https://openalex.org/I20231570","https://openalex.org/I37796252","https://openalex.org/I4210096250"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhihua Zhang","raw_affiliation_strings":["Peking University &BIBDR, China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University &BIBDR, China, Beijing, China","institution_ids":["https://openalex.org/I20231570","https://openalex.org/I4210096250"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100339293","display_name":"Wenwu Zhu","orcid":"https://orcid.org/0000-0003-2236-9290"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenwu Zhu","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100378783","display_name":"Tong Zhang","orcid":"https://orcid.org/0000-0002-3506-0180"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Zhang","raw_affiliation_strings":["Tencent AI Lab, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent AI Lab, Shenzhen, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062247330","display_name":"Jian Pei","orcid":"https://orcid.org/0000-0002-2200-8711"},"institutions":[{"id":"https://openalex.org/I18014758","display_name":"Simon Fraser University","ror":"https://ror.org/0213rcc28","country_code":"CA","type":"funder","lineage":["https://openalex.org/I18014758"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jian Pei","raw_affiliation_strings":["JD.com &Simon Fraser University, Vancouver, Canada"],"affiliations":[{"raw_affiliation_string":"JD.com &Simon Fraser University, Vancouver, Canada","institution_ids":["https://openalex.org/I18014758"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":6,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.138,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.822228,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1900","last_page":"1909"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.5360774},{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to Rank","score":0.48528263},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47429255}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7473348},{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.6140817},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.5735634},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.5360774},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.48528263},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.47944131},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47429255},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.46293774},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44949034},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.44067892},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44065237},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4147655},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16948092},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.096615404},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3219819.3220044","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1485437584","https://openalex.org/W1576347883","https://openalex.org/W1788809966","https://openalex.org/W1945899805","https://openalex.org/W1951829412","https://openalex.org/W1964509623","https://openalex.org/W1970576574","https://openalex.org/W1973616272","https://openalex.org/W1979750072","https://openalex.org/W1998269045","https://openalex.org/W2002834872","https://openalex.org/W2042465463","https://openalex.org/W2045390367","https://openalex.org/W2088424151","https://openalex.org/W2093813380","https://openalex.org/W2101043704","https://openalex.org/W2116019049","https://openalex.org/W2121689290","https://openalex.org/W2124659530","https://openalex.org/W2139759436","https://openalex.org/W2146502635","https://openalex.org/W2148825261","https://openalex.org/W2152402969","https://openalex.org/W2157988812","https://openalex.org/W2233419371","https://openalex.org/W2255614306","https://openalex.org/W2271449166","https://openalex.org/W2295739661","https://openalex.org/W2415326922","https://openalex.org/W2509235963","https://openalex.org/W2542377909","https://openalex.org/W2572651649","https://openalex.org/W2574645406","https://openalex.org/W2583200575","https://openalex.org/W2616345629","https://openalex.org/W2624941619","https://openalex.org/W2745024368","https://openalex.org/W2952449615","https://openalex.org/W2963004721","https://openalex.org/W2963393358","https://openalex.org/W2979473749","https://openalex.org/W2998508934","https://openalex.org/W3112410551","https://openalex.org/W4205841652","https://openalex.org/W4230743003","https://openalex.org/W4292022450"],"related_works":["https://openalex.org/W4376155396","https://openalex.org/W3011471740","https://openalex.org/W2971351794","https://openalex.org/W2884580467","https://openalex.org/W2772359885","https://openalex.org/W2572315477","https://openalex.org/W2544639518","https://openalex.org/W1973739845","https://openalex.org/W1947085858","https://openalex.org/W119752240"],"abstract_inverted_index":{"Factorization":[0],"Machine":[1],"(FM)":[2],"is":[3,13,54,60,138],"a":[4,68,107],"supervised":[5],"machine":[6],"learning":[7,71],"model":[8],"for":[9,37,117],"feature":[10],"engineering,":[11],"which":[12],"widely":[14],"used":[15],"in":[16,48,106,161],"many":[17],"real-world":[18],"applications.":[19],"In":[20],"this":[21,64],"paper,":[22],"we":[23,66,96,130],"consider":[24],"the":[25,28,41,51,58,79,90,112,133,143,156],"case":[26],"that":[27,111,132,141,149],"data":[29,59],"samples":[30],"arrive":[31],"sequentially.":[32],"The":[33],"existing":[34],"convex":[35],"formulation":[36],"online":[38,70,158],"FM":[39,82,118,159],"has":[40,151],"strong":[42],"theoretical":[43],"guarantee":[44],"and":[45,88,165],"stable":[46],"performance":[47],"practice,":[49],"but":[50],"computational":[52],"cost":[53],"typically":[55],"expensive":[56],"when":[57],"high-dimensional.":[61],"To":[62],"address":[63],"weakness,":[65],"devise":[67],"novel":[69],"algorithm":[72],"called":[73],"Sketched":[74],"Follow-The-Regularizer-Leader":[75],"(SFTRL).":[76],"SFTRL":[77,137,150],"presents":[78],"parameters":[80,91],"of":[81,114,136,142],"implicitly":[83],"by":[84],"maintaining":[85],"low-rank":[86],"matrices":[87,105],"updates":[89],"via":[92],"sketching.":[93],"More":[94],"specifically,":[95],"propose":[97],"Generalized":[98],"Frequent":[99],"Directions":[100],"to":[101,140],"approximate":[102],"indefinite":[103],"symmetric":[104],"streaming":[108],"way,":[109],"making":[110],"sum":[113],"historical":[115],"gradients":[116],"could":[119],"be":[120],"estimated":[121],"with":[122],"tighter":[123],"error":[124],"bound":[125,135],"efficiently.":[126],"With":[127],"mild":[128],"assumptions,":[129],"prove":[131],"regret":[134],"close":[139],"standard":[144],"FTRL.":[145],"Experimental":[146],"results":[147],"show":[148],"better":[152],"prediction":[153],"quality":[154],"than":[155],"state-of-the-art":[157],"algorithms":[160],"much":[162],"lower":[163],"time":[164],"space":[166],"complexities.":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2808978508","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2}],"updated_date":"2025-04-19T21:32:29.055684","created_date":"2018-06-29"}