{"id":"https://openalex.org/W2767719051","doi":"https://doi.org/10.1145/3132847.3133028","title":"Fast Word Recognition for Noise channel-based Models in Scenarios with Noise Specific Domain Knowledge","display_name":"Fast Word Recognition for Noise channel-based Models in Scenarios with Noise Specific Domain Knowledge","publication_year":2017,"publication_date":"2017-11-06","ids":{"openalex":"https://openalex.org/W2767719051","doi":"https://doi.org/10.1145/3132847.3133028","mag":"2767719051"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3132847.3133028","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015927757","display_name":"Marco Cristo","orcid":"https://orcid.org/0000-0001-8948-4192"},"institutions":[{"id":"https://openalex.org/I62885914","display_name":"Universidade Federal do Amazonas","ror":"https://ror.org/02263ky35","country_code":"BR","type":"funder","lineage":["https://openalex.org/I62885914"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marco Cristo","raw_affiliation_strings":["Federal University of Amazonas, Manaus, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Amazonas, Manaus, Brazil","institution_ids":["https://openalex.org/I62885914"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026907832","display_name":"Ra\u00edza Hanada","orcid":null},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"funder","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ra\u00edza Hanada","raw_affiliation_strings":["University of S\u00e3o Paulo, S\u00e3o Carlos, Brazil"],"affiliations":[{"raw_affiliation_string":"University of S\u00e3o Paulo, S\u00e3o Carlos, Brazil","institution_ids":["https://openalex.org/I17974374"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011385272","display_name":"Andr\u00e9 Lopes Carvalho","orcid":"https://orcid.org/0000-0001-7214-6402"},"institutions":[{"id":"https://openalex.org/I62885914","display_name":"Universidade Federal do Amazonas","ror":"https://ror.org/02263ky35","country_code":"BR","type":"funder","lineage":["https://openalex.org/I62885914"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Andr\u00e9 Carvalho","raw_affiliation_strings":["Federal University of Amazonas, Manaus, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Amazonas, Manaus, Brazil","institution_ids":["https://openalex.org/I62885914"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066640467","display_name":"Fernando Lores","orcid":null},"institutions":[{"id":"https://openalex.org/I62885914","display_name":"Universidade Federal do Amazonas","ror":"https://ror.org/02263ky35","country_code":"BR","type":"funder","lineage":["https://openalex.org/I62885914"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Fernando Anglada Lores","raw_affiliation_strings":["Federal University of Amazonas, Manaus, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Amazonas, Manaus, Brazil","institution_ids":["https://openalex.org/I62885914"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054251380","display_name":"Maria da Gra\u00e7a Campos Pimentel","orcid":"https://orcid.org/0000-0001-8264-5811"},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"funder","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Maria da Gra\u00e7a C. Pimentel","raw_affiliation_strings":["University of S\u00e3o Paulo, S\u00e3o Carlos, Brazil"],"affiliations":[{"raw_affiliation_string":"University of S\u00e3o Paulo, S\u00e3o Carlos, Brazil","institution_ids":["https://openalex.org/I17974374"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.075,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.191277,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":63,"max":71},"biblio":{"volume":null,"issue":null,"first_page":"607","last_page":"616"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/edit-distance","display_name":"Edit distance","score":0.47518602}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8353098},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.63391656},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.6133797},{"id":"https://openalex.org/C157486923","wikidata":"https://www.wikidata.org/wiki/Q1376436","display_name":"String (physics)","level":2,"score":0.499166},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4886127},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.48208076},{"id":"https://openalex.org/C44359876","wikidata":"https://www.wikidata.org/wiki/Q5338467","display_name":"Edit distance","level":2,"score":0.47518602},{"id":"https://openalex.org/C87431388","wikidata":"https://www.wikidata.org/wiki/Q2070573","display_name":"Perfect hash function","level":4,"score":0.43797258},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.4250043},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.42496866},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34597507},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28760934},{"id":"https://openalex.org/C178489894","wikidata":"https://www.wikidata.org/wiki/Q8789","display_name":"Cryptography","level":2,"score":0.16963264},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10359731},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0},{"id":"https://openalex.org/C7608002","wikidata":"https://www.wikidata.org/wiki/Q477202","display_name":"Cryptographic hash function","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3132847.3133028","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320309327","funder_display_name":"Google","award_id":null},{"funder":"https://openalex.org/F4320320997","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","award_id":null},{"funder":"https://openalex.org/F4320322025","funder_display_name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","award_id":null},{"funder":"https://openalex.org/F4320322994","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado do Amazonas","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W1994626127","https://openalex.org/W2014753445","https://openalex.org/W2086511124","https://openalex.org/W2966207845"],"related_works":["https://openalex.org/W4302448913","https://openalex.org/W3136593074","https://openalex.org/W3044917232","https://openalex.org/W2950457310","https://openalex.org/W2119149496","https://openalex.org/W2055693471","https://openalex.org/W2054882906","https://openalex.org/W2044001676","https://openalex.org/W2007540612","https://openalex.org/W1498160656"],"abstract_inverted_index":{"Word":[0],"recognition":[1,139],"is":[2,17,32,42],"a":[3,24,27,40,50,151,156,185,208],"challenging":[4],"task":[5],"faced":[6],"by":[7,71,199],"many":[8],"applications,":[9],"specially":[10],"in":[11,140,150,178],"very":[12,134,141],"noisy":[13,142],"scenarios.":[14],"This":[15],"problem":[16],"usually":[18,60],"seen":[19],"as":[20,119],"the":[21,43,68,81,83,110,126,163,200],"transmission":[22],"of":[23,39,53,166,195],"word":[25,38,138,179],"through":[26],"noisy-channel,":[28],"such":[29,107,170],"that":[30,171],"it":[31],"necessary":[33],"to":[34,74,207],"determine":[35],"which":[36,144,192],"known":[37],"lexicon":[41,127],"received":[44],"string.":[45],"To":[46,79],"be":[47,65],"feasible,":[48],"just":[49],"reduced":[51],"set":[52],"candidate":[54],"words":[55],"are":[56,59],"selected.":[57],"They":[58],"chosen":[61],"if":[62],"they":[63,120],"can":[64],"transformed":[66],"into":[67],"input":[69],"string":[70],"applying":[72],"up":[73],"k":[75,124],"character":[76],"edit":[77],"operations.":[78],"rank":[80],"candidates,":[82,169],"most":[84,167],"effective":[85,146],"estimates":[86],"use":[87,99],"domain":[88],"knowledge":[89],"about":[90,212],"noise":[91],"sources":[92],"and":[93,109,125],"error":[94],"distributions,":[95],"extracted":[96],"from":[97],"real":[98],"data.":[100],"In":[101,129],"scenarios":[102,143],"with":[103,123],"much":[104],"noise,":[105],"however,":[106],"estimates,":[108],"index":[111],"strategies":[112],"normally":[113],"required,":[114],"do":[115],"not":[116],"scale":[117],"well":[118],"grow":[121],"exponentially":[122],"size.":[128],"this":[130],"work,":[131],"we":[132],"propose":[133,184],"efficient":[135],"methods":[136,203],"for":[137,188],"support":[145],"edit-based":[147,190],"distance":[148],"algorithms":[149],"Mor-Fraenkel":[152],"index,":[153],"searchable":[154],"using":[155],"minimum":[157],"perfect":[158],"hashing.":[159],"The":[160],"method":[161],"allows":[162],"early":[164],"processing":[165],"promising":[168],"fast":[172],"pruned":[173],"searches":[174],"present":[175],"negligible":[176],"loss":[177],"ranking":[180],"quality.":[181],"We":[182],"also":[183],"linear":[186],"heuristic":[187],"estimating":[189],"distances":[191],"take":[193],"advantage":[194],"information":[196],"already":[197],"provided":[198],"index.":[201],"Our":[202],"achieve":[204],"precision":[205],"similar":[206],"state-of-the-art":[209],"approach,":[210],"being":[211],"ten":[213],"times":[214],"faster.":[215]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2767719051","counts_by_year":[{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-19T00:09:07.321118","created_date":"2017-11-17"}