{"id":"https://openalex.org/W2770793867","doi":"https://doi.org/10.1145/3131885.3131934","title":"SoC Design Of A Novel Cluster-Based Approach for Real-Time Lane Detection in Low Quality Images","display_name":"SoC Design Of A Novel Cluster-Based Approach for Real-Time Lane Detection in Low Quality Images","publication_year":2017,"publication_date":"2017-09-05","ids":{"openalex":"https://openalex.org/W2770793867","doi":"https://doi.org/10.1145/3131885.3131934","mag":"2770793867"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3131885.3131934","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081869234","display_name":"Christophe Bobda","orcid":"https://orcid.org/0000-0002-9042-9470"},"institutions":[{"id":"https://openalex.org/I78715868","display_name":"University of Arkansas at Fayetteville","ror":"https://ror.org/05jbt9m15","country_code":"US","type":"education","lineage":["https://openalex.org/I78715868"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Christophe Bobda","raw_affiliation_strings":["University of Arkansas, USA"],"affiliations":[{"raw_affiliation_string":"University of Arkansas, USA","institution_ids":["https://openalex.org/I78715868"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5096764384","display_name":"Md Jubaer Hossain Pantho","orcid":null},"institutions":[{"id":"https://openalex.org/I78715868","display_name":"University of Arkansas at Fayetteville","ror":"https://ror.org/05jbt9m15","country_code":"US","type":"education","lineage":["https://openalex.org/I78715868"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Md Jubaer Hossain Pantho","raw_affiliation_strings":["University of Arkansas, USA"],"affiliations":[{"raw_affiliation_string":"University of Arkansas, USA","institution_ids":["https://openalex.org/I78715868"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072225000","display_name":"Cindy Roullet","orcid":null},"institutions":[{"id":"https://openalex.org/I78715868","display_name":"University of Arkansas at Fayetteville","ror":"https://ror.org/05jbt9m15","country_code":"US","type":"education","lineage":["https://openalex.org/I78715868"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cindy Roullet","raw_affiliation_strings":["University of Arkansas, USA"],"affiliations":[{"raw_affiliation_string":"University of Arkansas, USA","institution_ids":["https://openalex.org/I78715868"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108358495","display_name":"Abdelaziz Bensrhair","orcid":null},"institutions":[{"id":"https://openalex.org/I88814501","display_name":"Institut National des Sciences Appliqu\u00e9es Rouen Normandie","ror":"https://ror.org/020ws7586","country_code":"FR","type":"education","lineage":["https://openalex.org/I4210105918","https://openalex.org/I88814501"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Abdelaziz Bensrhair","raw_affiliation_strings":["INSA de Rouen, France"],"affiliations":[{"raw_affiliation_string":"INSA de Rouen, France","institution_ids":["https://openalex.org/I88814501"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067561706","display_name":"Samia A\u00efnouz","orcid":"https://orcid.org/0000-0002-2699-4002"},"institutions":[{"id":"https://openalex.org/I88814501","display_name":"Institut National des Sciences Appliqu\u00e9es Rouen Normandie","ror":"https://ror.org/020ws7586","country_code":"FR","type":"education","lineage":["https://openalex.org/I4210105918","https://openalex.org/I88814501"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Samia Ainouz","raw_affiliation_strings":["INSA de Rouen, France"],"affiliations":[{"raw_affiliation_string":"INSA de Rouen, France","institution_ids":["https://openalex.org/I88814501"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.676,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.354803,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"186","last_page":"192"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hough-transform","display_name":"Hough Transform","score":0.72186655},{"id":"https://openalex.org/keywords/canny-edge-detector","display_name":"Canny edge detector","score":0.57337236},{"id":"https://openalex.org/keywords/speedup","display_name":"Speedup","score":0.48138765}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8135942},{"id":"https://openalex.org/C78201319","wikidata":"https://www.wikidata.org/wiki/Q685727","display_name":"Grayscale","level":3,"score":0.74592626},{"id":"https://openalex.org/C200518788","wikidata":"https://www.wikidata.org/wiki/Q195076","display_name":"Hough transform","level":3,"score":0.72186655},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.6720192},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6372737},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.5907612},{"id":"https://openalex.org/C14705441","wikidata":"https://www.wikidata.org/wiki/Q597183","display_name":"Canny edge detector","level":5,"score":0.57337236},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.55399853},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.49482983},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.49460575},{"id":"https://openalex.org/C193536780","wikidata":"https://www.wikidata.org/wiki/Q1513153","display_name":"Edge detection","level":4,"score":0.49408486},{"id":"https://openalex.org/C68339613","wikidata":"https://www.wikidata.org/wiki/Q1549489","display_name":"Speedup","level":2,"score":0.48138765},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.46806777},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.4415552},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.43702066},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.35142517},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.28030246},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.25363708},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.24770474},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.09019804},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3131885.3131934","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1547375500","https://openalex.org/W1603515040","https://openalex.org/W1968256263","https://openalex.org/W2008559350","https://openalex.org/W2016128908","https://openalex.org/W2032438872","https://openalex.org/W2051077519","https://openalex.org/W2103866601","https://openalex.org/W2116096484","https://openalex.org/W2118545852","https://openalex.org/W2120762646","https://openalex.org/W2146575011","https://openalex.org/W2152027913","https://openalex.org/W2461104673","https://openalex.org/W3102168793","https://openalex.org/W3214102110","https://openalex.org/W4248083759"],"related_works":["https://openalex.org/W3169126738","https://openalex.org/W3134368758","https://openalex.org/W2980082320","https://openalex.org/W2558559991","https://openalex.org/W2545065926","https://openalex.org/W2355177902","https://openalex.org/W2036421992","https://openalex.org/W1999451535","https://openalex.org/W1994279415","https://openalex.org/W1986338341"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"present":[4],"a":[5,62,72,128,133,139,145],"novel":[6],"System":[7],"on":[8,17,47,83,127,130,149],"Chip":[9],"design":[10,126],"for":[11,101],"real":[12],"time":[13],"lane":[14],"detection":[15,93],"approach":[16],"low-quality":[18],"grayscale":[19],"images.":[20],"The":[21,36,77,105],"proposed":[22],"method":[23],"leverages":[24],"the":[25,48,54,58],"sequential":[26],"read":[27],"out":[28],"from":[29,53],"image":[30,55],"sensors":[31],"to":[32,38,41,86,144],"progressively":[33],"build":[34],"clusters.":[35],"decision":[37],"allocate":[39],"pixels":[40,51],"existing":[42],"lines":[43,106],"(clusters)":[44],"is":[45,99],"made":[46],"fly":[49],"as":[50],"flow":[52],"sensor":[56],"into":[57,115],"system.":[59],"We":[60,123],"propose":[61],"hardware/software":[63],"partitioning":[64],"that":[65],"places":[66],"low-level":[67],"computational":[68],"intensive":[69],"parts":[70],"in":[71,75],"pipelined":[73],"chain":[74],"hardware.":[76],"pipeline":[78],"first":[79],"applies":[80],"morphological":[81],"operations":[82],"incoming":[84],"images":[85],"enhance":[87],"their":[88],"quality.":[89],"Later":[90],"canny":[91],"edge":[92],"followed":[94],"by":[95],"Probabilistic":[96],"Hough":[97],"Transform":[98],"used":[100],"accurate":[102],"line":[103],"detection.":[104],"are":[107],"then":[108],"filtered":[109],"and":[110,137],"clustered":[111],"before":[112],"being":[113],"fitted":[114],"road":[116],"lanes":[117],"using":[118],"weighted":[119],"least":[120],"squares":[121],"method.":[122],"prototype":[124],"our":[125],"system":[129],"FPGA":[131],"with":[132],"precision":[134],"above":[135],"90%":[136],"demonstrate":[138],"speedup":[140],"of":[141],"2.09x":[142],"compared":[143],"software":[146],"only":[147],"implementation":[148],"an":[150],"embedded":[151],"processor.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2770793867","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2024-12-17T14:46:27.938954","created_date":"2017-12-04"}