{"id":"https://openalex.org/W2738449271","doi":"https://doi.org/10.1145/3072959.3073708","title":"Kernel-predicting convolutional networks for denoising Monte Carlo renderings","display_name":"Kernel-predicting convolutional networks for denoising Monte Carlo renderings","publication_year":2017,"publication_date":"2017-07-20","ids":{"openalex":"https://openalex.org/W2738449271","doi":"https://doi.org/10.1145/3072959.3073708","mag":"2738449271"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3072959.3073708","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3072959.3073708?download=true","source":{"id":"https://openalex.org/S185367456","display_name":"ACM Transactions on Graphics","issn_l":"0730-0301","issn":["0730-0301","1557-7368"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3072959.3073708?download=true","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026966534","display_name":"Steve Bako","orcid":"https://orcid.org/0000-0002-8090-7918"},"institutions":[{"id":"https://openalex.org/I2803209242","display_name":"University of California System","ror":"https://ror.org/00pjdza24","country_code":"US","type":"education","lineage":["https://openalex.org/I2803209242"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Steve Bako","raw_affiliation_strings":["University of California"],"affiliations":[{"raw_affiliation_string":"University of California","institution_ids":["https://openalex.org/I2803209242"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020200055","display_name":"Thijs Vogels","orcid":"https://orcid.org/0000-0002-5884-4842"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"education","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]},{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["CH","US"],"is_corresponding":false,"raw_author_name":"Thijs Vogels","raw_affiliation_strings":["ETH Z\u00fcrich & Disney Research"],"affiliations":[{"raw_affiliation_string":"ETH Z\u00fcrich & Disney Research","institution_ids":["https://openalex.org/I35440088","https://openalex.org/I4210142140"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041664883","display_name":"Brian McWilliams","orcid":"https://orcid.org/0009-0002-7433-1702"},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Brian Mcwilliams","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045333410","display_name":"Mark Meyer","orcid":"https://orcid.org/0009-0004-3607-8966"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mark Meyer","raw_affiliation_strings":["Pixar Animation Studios"],"affiliations":[{"raw_affiliation_string":"Pixar Animation Studios","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050969104","display_name":"Jan Nov\u00e1k","orcid":"https://orcid.org/0000-0002-8320-9584"},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jan Nov\u00e1K","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055213020","display_name":"Alex Harvill","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alex Harvill","raw_affiliation_strings":["Pixar Animation Studios"],"affiliations":[{"raw_affiliation_string":"Pixar Animation Studios","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087948617","display_name":"Pradeep Sen","orcid":"https://orcid.org/0000-0002-8042-924X"},"institutions":[{"id":"https://openalex.org/I2803209242","display_name":"University of California System","ror":"https://ror.org/00pjdza24","country_code":"US","type":"education","lineage":["https://openalex.org/I2803209242"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pradeep Sen","raw_affiliation_strings":["University of California"],"affiliations":[{"raw_affiliation_string":"University of California","institution_ids":["https://openalex.org/I2803209242"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030916311","display_name":"Tony DeRose","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tony Derose","raw_affiliation_strings":["Pixar Animation Studios"],"affiliations":[{"raw_affiliation_string":"Pixar Animation Studios","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037043205","display_name":"Fabrice Rousselle","orcid":"https://orcid.org/0009-0003-2978-2130"},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fabrice Rousselle","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":16.092,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":283,"citation_normalized_percentile":{"value":0.924801,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"36","issue":"4","first_page":"1","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.73560584},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.62640226},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.434548}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7624135},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.73560584},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6640775},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6638211},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.62640226},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.57212174},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5434722},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4664485},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.44908944},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.434548},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.43362823},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38455638},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36078924},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34371746},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.19934577},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1443128},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3072959.3073708","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3072959.3073708?download=true","source":{"id":"https://openalex.org/S185367456","display_name":"ACM Transactions on Graphics","issn_l":"0730-0301","issn":["0730-0301","1557-7368"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3072959.3073708","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3072959.3073708?download=true","source":{"id":"https://openalex.org/S185367456","display_name":"ACM Transactions on Graphics","issn_l":"0730-0301","issn":["0730-0301","1557-7368"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"13-21168,16-19376"}],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1522301498","https://openalex.org/W1533861849","https://openalex.org/W1677149932","https://openalex.org/W1686810756","https://openalex.org/W1966251606","https://openalex.org/W1971958581","https://openalex.org/W1977778188","https://openalex.org/W1979011254","https://openalex.org/W1997784634","https://openalex.org/W2003884262","https://openalex.org/W2005081240","https://openalex.org/W2020681231","https://openalex.org/W2034080786","https://openalex.org/W2037642501","https://openalex.org/W2037735934","https://openalex.org/W2047913565","https://openalex.org/W2054640142","https://openalex.org/W2077323204","https://openalex.org/W2096500711","https://openalex.org/W2102727143","https://openalex.org/W2125561951","https://openalex.org/W2125833438","https://openalex.org/W2133665775","https://openalex.org/W2136396015","https://openalex.org/W2138624212","https://openalex.org/W2139189324","https://openalex.org/W2146337213","https://openalex.org/W2165652511","https://openalex.org/W2194775991","https://openalex.org/W2207744012","https://openalex.org/W2271840356","https://openalex.org/W2284050935","https://openalex.org/W2466064361","https://openalex.org/W2504987011","https://openalex.org/W2505636029","https://openalex.org/W2508457857","https://openalex.org/W2556872594","https://openalex.org/W2737368828","https://openalex.org/W2919115771","https://openalex.org/W2951004968","https://openalex.org/W2963470893","https://openalex.org/W3104196124","https://openalex.org/W4298304654"],"related_works":["https://openalex.org/W757031997","https://openalex.org/W4378510483","https://openalex.org/W4376166922","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W4221142204","https://openalex.org/W2922073769","https://openalex.org/W2490526372","https://openalex.org/W1574414179"],"abstract_inverted_index":{"Regression-based":[0],"algorithms":[1],"have":[2,45],"shown":[3],"to":[4,26,34,83,136,143,173],"be":[5,84],"good":[6],"at":[7],"denoising":[8,65],"Monte":[9],"Carlo":[10],"(MC)":[11],"renderings":[12],"by":[13,89,180],"leveraging":[14,90],"its":[15,149],"inexpensive":[16],"by-products":[17],"(e.g.,":[18],"feature":[19],"buffers).":[20],"However,":[21],"when":[22],"using":[23],"higher-order":[24],"models":[25],"handle":[27],"complex":[28,86],"cases,":[29],"these":[30,69],"techniques":[31],"often":[32],"overfit":[33],"noise":[35],"in":[36,193],"the":[37,80,104,108,119,134,138],"input.":[38],"For":[39],"this":[40],"reason,":[41],"supervised":[42,75],"learning":[43,76,195],"methods":[44,170],"been":[46],"proposed":[47],"that":[48,62,78,168],"train":[49,152],"on":[50,157],"a":[51,73,91,114,123,128,174],"large":[52],"collection":[53],"of":[54,101,118,176,184,190],"reference":[55],"examples,":[56],"but":[57],"they":[58],"use":[59],"explicit":[60],"filters":[61],"limit":[63],"their":[64],"ability.":[66],"To":[67],"address":[68],"problems,":[70],"we":[71,126],"propose":[72],"novel,":[74,129],"approach":[77],"allows":[79],"filtering":[81],"kernel":[82],"more":[85],"and":[87,153,160,187],"general":[88],"deep":[92,194],"convolutional":[93],"neural":[94],"network":[95,131],"(CNN)":[96],"architecture.":[97],"In":[98,122],"one":[99],"embodiment":[100],"our":[102,155,169,185],"framework,":[103],"CNN":[105,135],"directly":[106],"predicts":[107],"final":[109],"denoised":[110,146],"pixel":[111,147],"value":[112],"as":[113],"highly":[115],"non-linear":[116],"combination":[117],"input":[120],"features.":[121],"second":[124],"approach,":[125],"introduce":[127],"kernel-prediction":[130],"which":[132],"uses":[133],"estimate":[137],"local":[139],"weighting":[140],"kernels":[141],"used":[142],"compute":[144],"each":[145],"from":[148],"neighbors.":[150],"We":[151,178],"evaluate":[154],"networks":[156],"production":[158],"data":[159],"observe":[161],"improvements":[162],"over":[163],"state-of-the-art":[164],"MC":[165,197],"denoisers,":[166],"showing":[167],"generalize":[171],"well":[172],"variety":[175],"scenes.":[177],"conclude":[179],"analyzing":[181],"various":[182],"components":[183],"architecture":[186],"identify":[188],"areas":[189],"further":[191],"research":[192],"for":[196],"denoising.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2738449271","counts_by_year":[{"year":2024,"cited_by_count":34},{"year":2023,"cited_by_count":35},{"year":2022,"cited_by_count":27},{"year":2021,"cited_by_count":54},{"year":2020,"cited_by_count":53},{"year":2019,"cited_by_count":43},{"year":2018,"cited_by_count":29},{"year":2017,"cited_by_count":8}],"updated_date":"2025-01-17T09:57:51.866827","created_date":"2017-07-31"}