{"id":"https://openalex.org/W2561853884","doi":"https://doi.org/10.1145/3011077.3011137","title":"Sparse logistic regression with supervised selectivity for predictors selection in credit scoring","display_name":"Sparse logistic regression with supervised selectivity for predictors selection in credit scoring","publication_year":2016,"publication_date":"2016-12-08","ids":{"openalex":"https://openalex.org/W2561853884","doi":"https://doi.org/10.1145/3011077.3011137","mag":"2561853884"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3011077.3011137","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020168494","display_name":"Zhosan Yulia","orcid":null},"institutions":[{"id":"https://openalex.org/I19880235","display_name":"Lomonosov Moscow State University","ror":"https://ror.org/010pmpe69","country_code":"RU","type":"education","lineage":["https://openalex.org/I19880235"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Zhosan Yulia","raw_affiliation_strings":["Moscow State University, Moscow, Russia"],"affiliations":[{"raw_affiliation_string":"Moscow State University, Moscow, Russia","institution_ids":["https://openalex.org/I19880235"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088922287","display_name":"Olga Krasotkina","orcid":null},"institutions":[{"id":"https://openalex.org/I19880235","display_name":"Lomonosov Moscow State University","ror":"https://ror.org/010pmpe69","country_code":"RU","type":"education","lineage":["https://openalex.org/I19880235"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Olga Krasotkina","raw_affiliation_strings":["Moscow State University, Moscow, Russia"],"affiliations":[{"raw_affiliation_string":"Moscow State University, Moscow, Russia","institution_ids":["https://openalex.org/I19880235"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001899065","display_name":"Vadim Mottl","orcid":null},"institutions":[{"id":"https://openalex.org/I4210143490","display_name":"Computing Center","ror":"https://ror.org/0557kgc34","country_code":"RU","type":"facility","lineage":["https://openalex.org/I1313323035","https://openalex.org/I4210143490","https://openalex.org/I4210148470"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Vadim Mottl","raw_affiliation_strings":["Computing Center of Russian Academy of Science"],"affiliations":[{"raw_affiliation_string":"Computing Center of Russian Academy of Science","institution_ids":["https://openalex.org/I4210143490"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.428,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.810638,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"167","last_page":"172"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11653","display_name":"Financial Distress and Bankruptcy Prediction","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1402","display_name":"Accounting"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11653","display_name":"Financial Distress and Bankruptcy Prediction","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1402","display_name":"Accounting"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11496","display_name":"Credit Risk and Financial Regulations","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/2003","display_name":"Finance"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.5890057},{"id":"https://openalex.org/keywords/probability-of-default","display_name":"Probability of default","score":0.51241785},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.43077958}],"concepts":[{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.7368876},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6665862},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6436111},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.5890057},{"id":"https://openalex.org/C178350159","wikidata":"https://www.wikidata.org/wiki/Q162714","display_name":"Credit risk","level":2,"score":0.5568124},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5563078},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5369145},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5272067},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5142893},{"id":"https://openalex.org/C2779806880","wikidata":"https://www.wikidata.org/wiki/Q778470","display_name":"Probability of default","level":3,"score":0.51241785},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.43077958},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.332785},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.20876968},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.19667262},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14586493},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.08501294}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3011077.3011137","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1484545635","https://openalex.org/W1587512638","https://openalex.org/W1673066967","https://openalex.org/W1826065584","https://openalex.org/W1980931745","https://openalex.org/W2008023154","https://openalex.org/W2016207894","https://openalex.org/W2019473361","https://openalex.org/W2047649690","https://openalex.org/W2048801439","https://openalex.org/W2064031858","https://openalex.org/W2071515827","https://openalex.org/W2074682976","https://openalex.org/W2078684405","https://openalex.org/W2090499458","https://openalex.org/W2106528297","https://openalex.org/W2138943635","https://openalex.org/W2168123127","https://openalex.org/W2294933374","https://openalex.org/W2295045752","https://openalex.org/W3004765763","https://openalex.org/W3122429246","https://openalex.org/W39040241"],"related_works":["https://openalex.org/W4256656118","https://openalex.org/W3154069861","https://openalex.org/W3125376146","https://openalex.org/W3124496798","https://openalex.org/W3011906193","https://openalex.org/W2599734292","https://openalex.org/W2365888598","https://openalex.org/W2262093139","https://openalex.org/W2081577806","https://openalex.org/W2012173785"],"abstract_inverted_index":{"Credit":[0],"scoring":[1],"is":[2,22,74,77],"a":[3,44,71],"fundamental":[4],"and":[5,53,96],"one":[6],"of":[7,47,110],"the":[8,29,80,93,99,102,106],"most":[9],"complex":[10],"tasks":[11],"that":[12,34,76],"financial":[13],"institutions":[14],"have":[15],"to":[16,37],"deal":[17],"with.":[18],"Commonly":[19],"this":[20,69],"problem":[21],"considered":[23],"as":[24,43,86],"default":[25,38,54,94],"probability":[26],"prediction":[27,39,52],"for":[28,113],"lenders":[30],"counterparts.":[31],"Knowing":[32],"predictors":[33,95],"significantly":[35],"contribute":[36],"has":[40],"recently":[41],"emerged":[42],"crucial":[45],"issue":[46],"credit":[48],"risk":[49],"analysis.":[50],"Default":[51],"predictor":[55],"selection":[56],"are":[57],"two":[58],"related":[59],"issues,":[60],"but":[61],"many":[62],"existing":[63],"approaches":[64],"address":[65],"them":[66],"separately.":[67],"In":[68],"paper":[70],"unified":[72],"procedure":[73],"proposed":[75],"based":[78],"on":[79],"regularization":[81],"approach":[82],"with":[83],"logistic":[84],"regression":[85],"an":[87],"underlying":[88],"model,":[89],"which":[90],"simultaneously":[91],"selects":[92],"optimizes":[97],"all":[98],"parameters":[100],"within":[101],"model.":[103],"We":[104],"give":[105],"strong":[107],"probabilistic":[108],"statement":[109],"shrinkage":[111],"criterion":[112],"features":[114],"selection.":[115]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2561853884","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-10T16:00:09.307957","created_date":"2017-01-06"}