{"id":"https://openalex.org/W2563441803","doi":"https://doi.org/10.1145/3009977.3010003","title":"Reinforced random forest","display_name":"Reinforced random forest","publication_year":2016,"publication_date":"2016-12-18","ids":{"openalex":"https://openalex.org/W2563441803","doi":"https://doi.org/10.1145/3009977.3010003","mag":"2563441803"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3009977.3010003","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053707075","display_name":"Angshuman Paul","orcid":"https://orcid.org/0000-0002-0935-0256"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"education","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Angshuman Paul","raw_affiliation_strings":["Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5006205250","display_name":"Dipti Prasad Mukherjee","orcid":"https://orcid.org/0000-0001-5553-2790"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"education","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Dipti Prasad Mukherjee","raw_affiliation_strings":["Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.674,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.678106,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.505928}],"concepts":[{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.92869663},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.69985694},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6767766},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6071426},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5784242},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56553894},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.505928},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.4521395},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40180033},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36770698},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3009977.3010003","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Life on land","score":0.61,"id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1479807131","https://openalex.org/W1542955296","https://openalex.org/W1557499844","https://openalex.org/W1599871777","https://openalex.org/W1663610334","https://openalex.org/W1797580880","https://openalex.org/W1819522214","https://openalex.org/W1937766607","https://openalex.org/W1988195734","https://openalex.org/W2032494785","https://openalex.org/W2047875689","https://openalex.org/W2095704239","https://openalex.org/W2100659887","https://openalex.org/W2104167780","https://openalex.org/W2104471998","https://openalex.org/W2107726111","https://openalex.org/W2112076978","https://openalex.org/W2139564957","https://openalex.org/W2152799677","https://openalex.org/W2165669526","https://openalex.org/W2172532449","https://openalex.org/W2175803585","https://openalex.org/W2612972698","https://openalex.org/W2911964244","https://openalex.org/W3120740533","https://openalex.org/W4236965008"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W41015297","https://openalex.org/W3207760230","https://openalex.org/W2889302474","https://openalex.org/W2358353312","https://openalex.org/W2353836703","https://openalex.org/W2296488620","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Reinforcement":[0],"learning":[1,9,30],"improves":[2],"classification":[3,33,97,105,141],"accuracy.":[4,34,98],"But":[5],"use":[6,59],"of":[7,15,67,72,91],"reinforcement":[8,29],"is":[10,37,47,76,101],"relatively":[11],"unexplored":[12],"in":[13,96,121,127,139],"case":[14],"random":[16,23,125],"forest":[17,24,81,126],"classifier.":[18],"We":[19,87,115],"propose":[20],"a":[21,40,83],"reinforced":[22],"(RRF)":[25],"classifier":[26],"that":[27,89],"exploits":[28],"to":[31,55,63,78,124],"improve":[32],"Our":[35],"algorithm":[36],"initialized":[38],"with":[39],"forest.":[41,52],"Then":[42],"the":[43,50,73,79],"entire":[44],"training":[45],"data":[46,61],"tested":[48],"using":[49,82],"initial":[51],"In":[53],"order":[54],"reinforce":[56],"learning,":[57],"we":[58],"mis-classified":[60],"points":[62],"grow":[64],"certain":[65],"number":[66],"new":[68,74],"trees.":[69],"A":[70],"subset":[71],"trees":[75,93],"added":[77],"existing":[80],"novel":[84],"graph-based":[85],"approach.":[86],"show":[88,136],"addition":[90],"these":[92],"ensures":[94],"improvement":[95,120],"This":[99],"process":[100],"continued":[102],"iteratively":[103],"until":[104],"accuracy":[106],"saturates.":[107],"The":[108],"proposed":[109],"RRF":[110],"has":[111],"low":[112],"computational":[113],"burden.":[114],"achieve":[116],"at":[117],"least":[118],"3%":[119],"F-measure":[122],"compared":[123],"three":[128],"breast":[129],"cancer":[130],"datasets.":[131],"Results":[132],"on":[133],"benchmark":[134],"datasets":[135],"significant":[137],"reduction":[138],"average":[140],"error.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2563441803","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":3}],"updated_date":"2025-01-04T05:34:59.773689","created_date":"2017-01-06"}