{"id":"https://openalex.org/W2963201557","doi":"https://doi.org/10.1145/2983323.2983854","title":"Modeling Customer Engagement from Partial Observations","display_name":"Modeling Customer Engagement from Partial Observations","publication_year":2016,"publication_date":"2016-10-24","ids":{"openalex":"https://openalex.org/W2963201557","doi":"https://doi.org/10.1145/2983323.2983854","mag":"2963201557"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2983323.2983854","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2983854&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"http://dl.acm.org/ft_gateway.cfm?id=2983854&type=pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110361523","display_name":"Jelena Stojanovic","orcid":null},"institutions":[{"id":"https://openalex.org/I84392919","display_name":"Temple University","ror":"https://ror.org/00kx1jb78","country_code":"US","type":"education","lineage":["https://openalex.org/I84392919"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jelena Stojanovic","raw_affiliation_strings":["Temple University, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"Temple University, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I84392919"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007743373","display_name":"Djordje Gligorijevic","orcid":"https://orcid.org/0000-0003-4018-0213"},"institutions":[{"id":"https://openalex.org/I84392919","display_name":"Temple University","ror":"https://ror.org/00kx1jb78","country_code":"US","type":"education","lineage":["https://openalex.org/I84392919"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Djordje Gligorijevic","raw_affiliation_strings":["Temple University, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"Temple University, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I84392919"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044038055","display_name":"Zoran Obradovi\u0107","orcid":"https://orcid.org/0000-0002-2051-0142"},"institutions":[{"id":"https://openalex.org/I84392919","display_name":"Temple University","ror":"https://ror.org/00kx1jb78","country_code":"US","type":"education","lineage":["https://openalex.org/I84392919"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zoran Obradovic","raw_affiliation_strings":["Temple University, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"Temple University, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I84392919"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.795,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.788099,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1403","last_page":"1412"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10154","display_name":"Customer Service Quality and Loyalty","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1407","display_name":"Organizational Behavior and Human Resource Management"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11536","display_name":"Consumer Retail Behavior Studies","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/customer-engagement","display_name":"Customer engagement","score":0.5444445},{"id":"https://openalex.org/keywords/customer-intelligence","display_name":"Customer intelligence","score":0.510242},{"id":"https://openalex.org/keywords/ticket","display_name":"Ticket","score":0.4954914},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.45553187},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.44441995},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.42644334}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70622444},{"id":"https://openalex.org/C101276457","wikidata":"https://www.wikidata.org/wiki/Q5196474","display_name":"Customer retention","level":4,"score":0.63691676},{"id":"https://openalex.org/C2778813691","wikidata":"https://www.wikidata.org/wiki/Q1369832","display_name":"Purchasing","level":2,"score":0.60237277},{"id":"https://openalex.org/C2776915394","wikidata":"https://www.wikidata.org/wiki/Q5196451","display_name":"Customer engagement","level":3,"score":0.5444445},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.5363124},{"id":"https://openalex.org/C57660159","wikidata":"https://www.wikidata.org/wiki/Q5196460","display_name":"Customer intelligence","level":5,"score":0.510242},{"id":"https://openalex.org/C2776540713","wikidata":"https://www.wikidata.org/wiki/Q7800647","display_name":"Ticket","level":2,"score":0.4954914},{"id":"https://openalex.org/C2776967331","wikidata":"https://www.wikidata.org/wiki/Q1132131","display_name":"Loyalty","level":2,"score":0.46720475},{"id":"https://openalex.org/C146897074","wikidata":"https://www.wikidata.org/wiki/Q1932925","display_name":"Loyalty business model","level":4,"score":0.45679262},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.45553187},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.44441995},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4346769},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.42644334},{"id":"https://openalex.org/C181622380","wikidata":"https://www.wikidata.org/wiki/Q26911","display_name":"Profit (economics)","level":2,"score":0.4214388},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40408415},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38843405},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.27209935},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.23532575},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.18064412},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.14461258},{"id":"https://openalex.org/C140781008","wikidata":"https://www.wikidata.org/wiki/Q1221081","display_name":"Service quality","level":3,"score":0.13076946},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.0},{"id":"https://openalex.org/C175444787","wikidata":"https://www.wikidata.org/wiki/Q39072","display_name":"Microeconomics","level":1,"score":0.0},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2983323.2983854","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2983854&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1803.10799","pdf_url":"https://arxiv.org/pdf/1803.10799","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2983323.2983854","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2983854&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.42}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-09-58854"},{"funder":"https://openalex.org/F4320332180","funder_display_name":"Defense Advanced Research Projects Agency","award_id":"FA9550-12-1-0406"}],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1544526228","https://openalex.org/W1806891645","https://openalex.org/W1998249118","https://openalex.org/W2000257387","https://openalex.org/W2005876975","https://openalex.org/W2025768430","https://openalex.org/W2026231650","https://openalex.org/W2042675952","https://openalex.org/W2100495367","https://openalex.org/W2101534792","https://openalex.org/W2106051978","https://openalex.org/W2112796928","https://openalex.org/W2116150816","https://openalex.org/W2116825644","https://openalex.org/W2125031621","https://openalex.org/W2130179707","https://openalex.org/W2155152989","https://openalex.org/W2161390063","https://openalex.org/W2167608136","https://openalex.org/W2182497163","https://openalex.org/W2219705828","https://openalex.org/W2226111737","https://openalex.org/W2281557635","https://openalex.org/W2293917562","https://openalex.org/W2395845552","https://openalex.org/W2559655401","https://openalex.org/W2563483491","https://openalex.org/W2597289420","https://openalex.org/W2604272474","https://openalex.org/W2613634265","https://openalex.org/W2950133940","https://openalex.org/W2964051375","https://openalex.org/W2998704965","https://openalex.org/W3104097132","https://openalex.org/W4231109964","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4246711600","https://openalex.org/W3201494080","https://openalex.org/W3127746600","https://openalex.org/W3093726886","https://openalex.org/W3093371186","https://openalex.org/W2903301835","https://openalex.org/W2753140789","https://openalex.org/W2529380711","https://openalex.org/W2134104271","https://openalex.org/W2125294213"],"abstract_inverted_index":{"It":[0],"is":[1,29,50,111,158,166],"of":[2,136,163,172],"high":[3],"interest":[4],"for":[5,31,46,65,89,119],"a":[6,60,86,99],"company":[7],"to":[8,12,75,113,147,170,181,188],"identify":[9],"customers":[10,58,73],"expected":[11],"bring":[13],"the":[14,18,161],"largest":[15],"profit":[16],"in":[17,95,150,203],"upcoming":[19],"period.":[20],"Knowing":[21],"as":[22,24,59,71,186],"much":[23],"possible":[25],"about":[26],"each":[27],"customer":[28,121,127,134,156],"crucial":[30],"such":[32],"predictions.":[33],"However,":[34],"their":[35,200],"demographic":[36,173],"data,":[37],"preferences,":[38],"and":[39,116,126],"other":[40],"information":[41,157,174],"that":[42,190],"might":[43],"be":[44,63],"useful":[45],"building":[47],"loyalty":[48],"programs":[49],"often":[51],"missing.":[52],"Additionally,":[53,160],"modeling":[54],"relations":[55],"among":[56],"different":[57,140],"network":[61],"can":[62],"beneficial":[64],"predictions":[66],"at":[67],"an":[68,204],"individual":[69],"level,":[70],"similar":[72,77],"tend":[74],"have":[76],"purchasing":[78,124],"patterns.":[79],"We":[80],"address":[81],"this":[82],"problem":[83],"by":[84],"proposing":[85],"robust":[87],"framework":[88],"structured":[90,117],"regression":[91],"on":[92,104,129],"deficient":[93],"data":[94],"evolving":[96],"networks":[97,131],"with":[98,195],"supervised":[100],"representation":[101,202],"learning":[102],"based":[103],"neural":[105],"features":[106],"embedding.":[107],"The":[108,142],"new":[109],"method":[110,165],"compared":[112,187],"several":[114,182],"unstructured":[115],"alternatives":[118,153,189],"predicting":[120],"behavior":[122],"(e.g.":[123],"frequency":[125],"ticket)":[128],"user":[130],"generated":[132],"from":[133,139],"databases":[135],"two":[137],"companies":[138],"industries.":[141],"obtained":[143],"results":[144],"show":[145],"4%":[146],"130%":[148],"improvement":[149],"accuracy":[151],"over":[152],"when":[154,168],"all":[155],"known.":[159],"robustness":[162],"our":[164],"demonstrated":[167],"up":[169,180],"80%":[171],"was":[175,179],"missing":[176,196],"where":[177],"it":[178],"folds":[183],"more":[184],"accurate":[185],"are":[191],"either":[192],"ignoring":[193],"cases":[194],"values":[197],"or":[198],"learn":[199],"feature":[201],"unsupervised":[205],"manner.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963201557","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":2}],"updated_date":"2024-12-06T23:36:07.227832","created_date":"2019-07-30"}