{"id":"https://openalex.org/W2276454361","doi":"https://doi.org/10.1145/2935764.2935797","title":"Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers","display_name":"Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers","publication_year":2016,"publication_date":"2016-07-08","ids":{"openalex":"https://openalex.org/W2276454361","doi":"https://doi.org/10.1145/2935764.2935797","mag":"2276454361"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2935764.2935797","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2935797&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"http://dl.acm.org/ft_gateway.cfm?id=2935797&type=pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067901047","display_name":"David Dinh","orcid":null},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"education","lineage":["https://openalex.org/I95457486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David Dinh","raw_affiliation_strings":["University of California, Berkeley, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, Berkeley, Berkeley, CA, USA","institution_ids":["https://openalex.org/I95457486"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079988301","display_name":"Harsha Vardhan Simhadri","orcid":"https://orcid.org/0000-0002-9323-2227"},"institutions":[{"id":"https://openalex.org/I148283060","display_name":"Lawrence Berkeley National Laboratory","ror":"https://ror.org/02jbv0t02","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I148283060","https://openalex.org/I39565521"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Harsha Vardhan Simhadri","raw_affiliation_strings":["Lawrence Berkeley National Lab, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"Lawrence Berkeley National Lab, Berkeley, CA, USA","institution_ids":["https://openalex.org/I148283060"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101956627","display_name":"Yuan Tang","orcid":"https://orcid.org/0000-0001-6772-9427"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuan Tang","raw_affiliation_strings":["Fudan University, Shanghai Key Lab. of Intelligent Information Processing, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Fudan University, Shanghai Key Lab. of Intelligent Information Processing, Shanghai, China","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.839,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":18,"citation_normalized_percentile":{"value":0.999402,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"49","last_page":"60"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10829","display_name":"Interconnection Networks and Systems","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10715","display_name":"Distributed and Parallel Computing Systems","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multi-core-processor","display_name":"Multi-core processor","score":0.42773563}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8179951},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.80030274},{"id":"https://openalex.org/C96324660","wikidata":"https://www.wikidata.org/wiki/Q205446","display_name":"Dataflow","level":2,"score":0.71380913},{"id":"https://openalex.org/C115537543","wikidata":"https://www.wikidata.org/wiki/Q165596","display_name":"Cache","level":2,"score":0.60876167},{"id":"https://openalex.org/C78766204","wikidata":"https://www.wikidata.org/wiki/Q555032","display_name":"Multi-core processor","level":2,"score":0.42773563},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.33129317}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2935764.2935797","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2935797&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1602.04552","pdf_url":"https://arxiv.org/pdf/1602.04552","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/2935764.2935797","pdf_url":"http://dl.acm.org/ft_gateway.cfm?id=2935797&type=pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","score":0.56,"id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320306084","funder_display_name":"U.S. Department of Energy","award_id":"DE-AC02-05CH11231, DE-SC0010200, DE-SC-0008700"},{"funder":"https://openalex.org/F4320307102","funder_display_name":"Intel Corporation","award_id":"ASPIRE Lab"},{"funder":"https://openalex.org/F4320307904","funder_display_name":"Oracle","award_id":"ASPIRE Lab"},{"funder":"https://openalex.org/F4320309327","funder_display_name":"Google","award_id":"ASPIRE Lab"},{"funder":"https://openalex.org/F4320309480","funder_display_name":"Nvidia","award_id":"ASPIRE LAb"},{"funder":"https://openalex.org/F4320332180","funder_display_name":"Defense Advanced Research Projects Agency","award_id":"HR0011-12-2-0016"}],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1491838213","https://openalex.org/W1507039213","https://openalex.org/W1745592534","https://openalex.org/W1967882079","https://openalex.org/W1968020161","https://openalex.org/W1968116929","https://openalex.org/W1971181882","https://openalex.org/W1972200437","https://openalex.org/W1973129504","https://openalex.org/W1973305402","https://openalex.org/W1973739282","https://openalex.org/W1976888542","https://openalex.org/W1988935981","https://openalex.org/W1996138408","https://openalex.org/W1999241319","https://openalex.org/W2002209075","https://openalex.org/W2016279572","https://openalex.org/W2016559894","https://openalex.org/W2028637981","https://openalex.org/W2044872254","https://openalex.org/W2047656763","https://openalex.org/W2055312318","https://openalex.org/W2059310886","https://openalex.org/W2060847221","https://openalex.org/W2068448872","https://openalex.org/W2087440962","https://openalex.org/W2089064856","https://openalex.org/W2093529653","https://openalex.org/W2098147619","https://openalex.org/W2098903349","https://openalex.org/W2104373803","https://openalex.org/W2118973181","https://openalex.org/W2122747952","https://openalex.org/W2123914565","https://openalex.org/W2126085027","https://openalex.org/W2131264486","https://openalex.org/W2140917900","https://openalex.org/W2159031085","https://openalex.org/W2159811471","https://openalex.org/W22262491","https://openalex.org/W2253769547","https://openalex.org/W2276454361","https://openalex.org/W2444244351","https://openalex.org/W2467057949","https://openalex.org/W2598689602","https://openalex.org/W3022367082","https://openalex.org/W3100417409","https://openalex.org/W3145128584","https://openalex.org/W4212764898","https://openalex.org/W4232836277"],"related_works":["https://openalex.org/W2918840249","https://openalex.org/W2316512426","https://openalex.org/W2132173263","https://openalex.org/W2110053126","https://openalex.org/W2104702637","https://openalex.org/W2023938924","https://openalex.org/W1993191611","https://openalex.org/W1991859582","https://openalex.org/W197049984","https://openalex.org/W1542410906"],"abstract_inverted_index":{"The":[0,193],"nested":[1],"parallel":[2,11,215],"(a.k.a.":[3],"fork-join)":[4],"model":[5,28,64,86],"is":[6,202,213,222,232,238],"widely":[7],"used":[8],"for":[9,146,196],"writing":[10],"programs.":[12],"However,":[13],"the":[14,26,60,66,84,102,147,159,168,190,197,214,223],"two":[15],"composition":[16,43],"constructs,":[17],"i.e.":[18],"\"||\"":[19],"(parallel)":[20],"and":[21,55,87,125,136,162,179,236],"\";\"":[22],"(serial),":[23],"that":[24,89,107,152,163],"comprise":[25],"nested-parallel":[27],"are":[29],"insufficient":[30],"in":[31,35,50,52,83,158,189,199],"expressing":[32],"\"partial":[33],"dependencies\"":[34],"a":[36,40,53,183,208,239],"program.":[37],"We":[38,71,100,150],"propose":[39,101],"new":[41],"dataflow":[42],"construct":[44],"\"\u219d\"":[45],"to":[46,65,81,111,131,171],"express":[47],"partial":[48],"dependencies":[49],"algorithms":[51,75,154,198],"processor-":[54],"cache-oblivious":[56],"way,":[57],"thus":[58],"extending":[59],"Nested":[61,67],"Parallel":[62,122],"(NP)":[63],"Dataflow":[68],"(ND)":[69],"model.":[70,149,192],"redesign":[72],"several":[73],"divide-and-conquer":[74],"ranging":[76],"from":[77],"dense":[78],"linear":[79],"algebra":[80],"dynamic-programming":[82],"ND":[85,109,148,160],"prove":[88,126],"they":[90],"all":[91],"have":[92,155],"optimal":[93,97,174],"span":[94],"while":[95],"retaining":[96],"cache":[98,177,216,226,230],"complexity.":[99],"design":[103],"of":[104,117,186,218,225,233],"runtime":[105],"schedulers":[106,145,165],"map":[108],"programs":[110],"multicore":[112],"processors":[113,135,187],"with":[114],"multiple":[115],"levels":[116],"possibly":[118],"shared":[119],"caches":[120],"(i.e,":[121],"Memory":[123],"Hierarchies)":[124],"guarantees":[127],"on":[128,176,182,207],"their":[129],"ability":[130],"balance":[132],"nodes":[133],"across":[134],"preserve":[137],"locality.":[138],"For":[139],"this,":[140],"we":[141],"adapt":[142],"space-bounded":[143],"(SB)":[144],"show":[151],"our":[153],"increased":[156],"\"parallelizability\"":[157],"model,":[161],"SB":[164],"can":[166],"use":[167],"extra":[169],"parallelizability":[170],"achieve":[172],"asymptotically":[173],"bounds":[175],"misses":[178],"running":[180,194],"time":[181,195],"greater":[184],"number":[185],"than":[188],"NP":[191],"this":[200],"paper":[201],"O((\u2211i=0h-1":[203],"Q*(t;\u03c3\u22c5":[204],"Mi)\u22c5":[205],"Ci)/p)":[206],"p-processor":[209],"machine,":[210],"where":[211],"Q*":[212],"complexity":[217],"task":[219],"t,":[220],"Ci":[221],"cost":[224],"miss":[227],"at":[228],"level-i":[229],"which":[231],"size":[234],"Mi,":[235],"\u03c3\u2208(0,1)":[237],"constant.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2276454361","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":1}],"updated_date":"2024-12-18T00:57:07.737889","created_date":"2016-06-24"}