{"id":"https://openalex.org/W1980103070","doi":"https://doi.org/10.1145/2820426.2820467","title":"The Impact of Structured Event Embeddings on Scalable Stock Forecasting Models","display_name":"The Impact of Structured Event Embeddings on Scalable Stock Forecasting Models","publication_year":2015,"publication_date":"2015-10-27","ids":{"openalex":"https://openalex.org/W1980103070","doi":"https://doi.org/10.1145/2820426.2820467","mag":"1980103070"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2820426.2820467","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011856571","display_name":"Janderson Borges do Nascimento","orcid":null},"institutions":[{"id":"https://openalex.org/I62885914","display_name":"Universidade Federal do Amazonas","ror":"https://ror.org/02263ky35","country_code":"BR","type":"education","lineage":["https://openalex.org/I62885914"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Janderson B. Nascimento","raw_affiliation_strings":["Federal University of Amazonas","Federal University of Amazonas; FPF Tech, Manaus, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Amazonas; FPF Tech, Manaus, Brazil","institution_ids":["https://openalex.org/I62885914"]},{"raw_affiliation_string":"Federal University of Amazonas","institution_ids":["https://openalex.org/I62885914"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015927757","display_name":"Marco Cristo","orcid":"https://orcid.org/0000-0001-8948-4192"},"institutions":[{"id":"https://openalex.org/I62885914","display_name":"Universidade Federal do Amazonas","ror":"https://ror.org/02263ky35","country_code":"BR","type":"education","lineage":["https://openalex.org/I62885914"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marco Cristo","raw_affiliation_strings":["Federal University of Amazonas, Manaus, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Amazonas, Manaus, Brazil","institution_ids":["https://openalex.org/I62885914"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.655553,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"121","last_page":"124"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11270","display_name":"Complex Systems and Time Series Analysis","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stock","display_name":"Stock (firearms)","score":0.4871678}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6546345},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.63394356},{"id":"https://openalex.org/C204036174","wikidata":"https://www.wikidata.org/wiki/Q909380","display_name":"Stock (firearms)","level":2,"score":0.4871678},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.47623447},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34682256},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.16893044},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.10143286},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2820426.2820467","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1493490255","https://openalex.org/W1522237958","https://openalex.org/W1577053131","https://openalex.org/W1614298861","https://openalex.org/W2008056655","https://openalex.org/W2016589492","https://openalex.org/W2064675550","https://openalex.org/W2090637028","https://openalex.org/W2106595237","https://openalex.org/W2126267628","https://openalex.org/W2133990480","https://openalex.org/W2471366537","https://openalex.org/W2768649190","https://openalex.org/W2911964244","https://openalex.org/W2963434388","https://openalex.org/W2998704965","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2389214306","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"According":[0],"to":[1,32,45,88],"the":[2,34,89],"efficient":[3],"market":[4,18],"hypothesis,":[5],"financial":[6],"prices":[7,48],"are":[8],"unpredictable.":[9],"However,":[10],"meaningful":[11],"advances":[12],"have":[13],"been":[14],"achieved":[15],"on":[16],"anticipating":[17],"movements":[19],"using":[20,73],"machine":[21],"learning":[22],"techniques.":[23],"In":[24],"this":[25],"work,":[26],"we":[27,79],"propose":[28],"a":[29,37,68],"novel":[30],"method":[31],"represent":[33],"input":[35],"for":[36],"stock":[38,47],"price":[39],"forecaster.":[40],"The":[41],"forecaster":[42],"is":[43,60],"able":[44],"predict":[46],"from":[49,55],"time":[50],"series":[51],"and":[52,65],"additional":[53],"information":[54,59],"web":[56],"pages.":[57],"Such":[58],"extracted":[61],"as":[62],"structured":[63],"events":[64],"represented":[66],"in":[67],"compressed":[69],"concept":[70],"space.":[71],"By":[72],"such":[74],"representation":[75],"with":[76],"scalable":[77],"forecasters,":[78],"reduced":[80],"prediction":[81],"error":[82],"by":[83],"about":[84],"10%,":[85],"when":[86],"compared":[87],"traditional":[90],"auto":[91],"regressive":[92],"models.":[93]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1980103070","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2}],"updated_date":"2025-01-18T03:45:55.951989","created_date":"2016-06-24"}