{"id":"https://openalex.org/W1978461101","doi":"https://doi.org/10.1145/2806416.2806513","title":"Large-scale Knowledge Base Completion","display_name":"Large-scale Knowledge Base Completion","publication_year":2015,"publication_date":"2015-10-17","ids":{"openalex":"https://openalex.org/W1978461101","doi":"https://doi.org/10.1145/2806416.2806513","mag":"1978461101"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2806416.2806513","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014548132","display_name":"Zhuoyu Wei","orcid":null},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhuoyu Wei","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110722665","display_name":"Jun Zhao","orcid":"https://orcid.org/0000-0003-3370-2263"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Zhao","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100389900","display_name":"Kang Liu","orcid":"https://orcid.org/0000-0002-6083-8433"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kang Liu","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068005043","display_name":"Zhenyu Qi","orcid":"https://orcid.org/0009-0000-1108-229X"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenyu Qi","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016507963","display_name":"Zhengya Sun","orcid":"https://orcid.org/0000-0003-2381-6363"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengya Sun","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084860614","display_name":"Guanhua Tian","orcid":null},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guanhua Tian","raw_affiliation_strings":["Chinese Academy of Sciences , Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences , Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.555,"has_fulltext":false,"cited_by_count":40,"citation_normalized_percentile":{"value":0.830209,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5212889},{"id":"https://openalex.org/keywords/base","display_name":"Base (topology)","score":0.47541338}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7462972},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72853935},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5698019},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5212889},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4923426},{"id":"https://openalex.org/C42058472","wikidata":"https://www.wikidata.org/wiki/Q810214","display_name":"Base (topology)","level":2,"score":0.47541338},{"id":"https://openalex.org/C4554734","wikidata":"https://www.wikidata.org/wiki/Q593744","display_name":"Knowledge base","level":2,"score":0.47149605},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47126174},{"id":"https://openalex.org/C75553542","wikidata":"https://www.wikidata.org/wiki/Q178161","display_name":"A priori and a posteriori","level":2,"score":0.44340083},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4414863},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38300467},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.32108736},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14072278},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2806416.2806513","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1512387364","https://openalex.org/W1756422141","https://openalex.org/W1760025803","https://openalex.org/W1977970897","https://openalex.org/W2016753842","https://openalex.org/W2021602734","https://openalex.org/W205829674","https://openalex.org/W2094728533","https://openalex.org/W2101802482","https://openalex.org/W2110117460","https://openalex.org/W2121075864","https://openalex.org/W2122865749","https://openalex.org/W2125297418","https://openalex.org/W2127426251","https://openalex.org/W2127795553","https://openalex.org/W2143211346","https://openalex.org/W2144429462","https://openalex.org/W2144461918","https://openalex.org/W2151502664","https://openalex.org/W2169992051","https://openalex.org/W2184957013","https://openalex.org/W2247119764","https://openalex.org/W2251960799","https://openalex.org/W2283196293","https://openalex.org/W261077481","https://openalex.org/W3032120536","https://openalex.org/W68132019"],"related_works":["https://openalex.org/W4237218165","https://openalex.org/W4210999218","https://openalex.org/W2963058055","https://openalex.org/W2904134584","https://openalex.org/W2896255488","https://openalex.org/W2784239688","https://openalex.org/W2605247815","https://openalex.org/W2551237228","https://openalex.org/W2511279186","https://openalex.org/W2375363249"],"abstract_inverted_index":{"Constructing":[0],"large-scale":[1,28,111],"knowledge":[2,29],"bases":[3],"has":[4,43,126],"attracted":[5],"much":[6,166,260],"attention":[7],"in":[8,26,45,84],"recent":[9],"years,":[10],"for":[11,60,98,170],"which":[12,174,211],"Knowledge":[13],"Base":[14],"Completion":[15],"(KBC)":[16],"is":[17,31,212],"a":[18,27,33,201],"key":[19],"technique.":[20],"In":[21,87,220],"general,":[22],"inferring":[23],"new":[24],"facts":[25,42],"base":[30],"not":[32,119,175],"trivial":[34],"task.":[35],"The":[36,240],"large":[37,78],"number":[38],"of":[39,48,51,116,133,138,186],"inferred":[40],"candidate":[41,71,79,100,168,179,197],"resulted":[44],"the":[46,49,89,131,134,161,178,187,206,226,237,255],"failure":[47],"majority":[50],"previous":[52],"approaches.":[53],"Inference":[54],"approaches":[55],"can":[56,93,109],"achieve":[57],"high":[58],"precision":[59],"formulas":[61],"that":[62,244],"are":[63,67],"accurate,":[64],"but":[65,181],"they":[66,108],"required":[68],"to":[69,104,159,235,252],"infer":[70],"instances":[72],"one":[73],"by":[74,199,230],"one,":[75],"and":[76,124,164,258],"extremely":[77],"sets":[80,169,180,198],"bog":[81],"them":[82],"down":[83],"expensive":[85],"calculations.":[86],"contrast,":[88],"existing":[90],"embedding-based":[91,157,231],"methods":[92],"easily":[94],"calculate":[95],"similarity-based":[96],"scores":[97],"each":[99],"instance":[101,162],"as":[102],"opposed":[103],"using":[105],"inference,":[106,173],"so":[107],"handle":[110],"data.":[112],"However,":[113],"this":[114,221],"type":[115],"method":[117],"does":[118],"consider":[120],"explicit":[121],"logical":[122],"semantics":[123],"usually":[125],"unsatisfactory":[127],"precision.":[128,239],"To":[129],"resolve":[130],"limitations":[132],"above":[135],"two":[136],"types":[137],"methods,":[139],"we":[140,191,223],"propose":[141],"an":[142,156],"approach":[143,246],"through":[144],"Inferring":[145,214],"via":[146,215],"Grounding":[147,216],"Network":[148,209,217],"Sampling":[149,218],"over":[150],"Selected":[151],"Instances.":[152],"We":[153],"first":[154],"employ":[155],"model":[158],"make":[160,193],"selection":[163],"generate":[165],"smaller":[167],"subsequent":[171],"fact":[172],"only":[176,192],"narrows":[177],"also":[182],"filters":[183],"out":[184],"part":[185],"noise":[188],"instances.":[189],"Then,":[190],"inferences":[194],"within":[195],"these":[196],"running":[200],"data-driven":[202],"inference":[203,238],"algorithm":[204],"on":[205,254],"Markov":[207],"Logic":[208],"(MLN),":[210],"called":[213],"(INS).":[219],"process,":[222],"especially":[224],"incorporate":[225],"similarity":[227],"priori":[228],"generated":[229],"models":[232],"into":[233],"INS":[234],"promote":[236],"experimental":[241],"results":[242],"show":[243],"our":[245],"improved":[247],"[email":[248,262],"protected]":[249,263],"from":[250],"32.911%":[251],"71.692%":[253],"FB15K":[256],"dataset":[257],"achieved":[259],"better":[261],"evaluations":[264],"than":[265],"state-of-the-art":[266],"methods.":[267]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1978461101","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":7}],"updated_date":"2025-01-20T19:07:26.247902","created_date":"2016-06-24"}