{"id":"https://openalex.org/W1083218774","doi":"https://doi.org/10.1145/2740908.2741697","title":"Exploring Supervised Methods for Temporal Link Prediction in Heterogeneous Social Networks","display_name":"Exploring Supervised Methods for Temporal Link Prediction in Heterogeneous Social Networks","publication_year":2015,"publication_date":"2015-05-18","ids":{"openalex":"https://openalex.org/W1083218774","doi":"https://doi.org/10.1145/2740908.2741697","mag":"1083218774"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2740908.2741697","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075234648","display_name":"Nataliia R\u00fcmmele","orcid":null},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"education","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Nataliia R\u00fcmmele","raw_affiliation_strings":["Vienna University of technology, Vienna, Austria"],"affiliations":[{"raw_affiliation_string":"Vienna University of technology, Vienna, Austria","institution_ids":["https://openalex.org/I145847075"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081854769","display_name":"Ryutaro Ichise","orcid":"https://orcid.org/0000-0001-8474-0150"},"institutions":[{"id":"https://openalex.org/I184597095","display_name":"National Institute of Informatics","ror":"https://ror.org/04ksd4g47","country_code":"JP","type":"facility","lineage":["https://openalex.org/I1319490839","https://openalex.org/I184597095","https://openalex.org/I4210158934"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ryutaro Ichise","raw_affiliation_strings":["(National Institute of Informatics, Tokyo, Japan)"],"affiliations":[{"raw_affiliation_string":"(National Institute of Informatics, Tokyo, Japan)","institution_ids":["https://openalex.org/I184597095"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043802309","display_name":"Hannes Werthner","orcid":"https://orcid.org/0000-0002-1508-277X"},"institutions":[{"id":"https://openalex.org/I145847075","display_name":"TU Wien","ror":"https://ror.org/04d836q62","country_code":"AT","type":"education","lineage":["https://openalex.org/I145847075"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Hannes Werthner","raw_affiliation_strings":["Vienna University of technology, Vienna, Austria"],"affiliations":[{"raw_affiliation_string":"Vienna University of technology, Vienna, Austria","institution_ids":["https://openalex.org/I145847075"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.135,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":12,"citation_normalized_percentile":{"value":0.846405,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"1363","last_page":"1368"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12592","display_name":"Opinion Dynamics and Social Influence","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/link","display_name":"Link (geometry)","score":0.81193686},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53585964},{"id":"https://openalex.org/keywords/social-network","display_name":"Social network (sociolinguistics)","score":0.51497704},{"id":"https://openalex.org/keywords/predictive-power","display_name":"Predictive power","score":0.4869674},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.44993663},{"id":"https://openalex.org/keywords/evolving-networks","display_name":"Evolving networks","score":0.42828733}],"concepts":[{"id":"https://openalex.org/C2778753846","wikidata":"https://www.wikidata.org/wiki/Q6554239","display_name":"Link (geometry)","level":2,"score":0.81193686},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7413929},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.5461801},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.54496056},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53585964},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5340385},{"id":"https://openalex.org/C4727928","wikidata":"https://www.wikidata.org/wiki/Q17164759","display_name":"Social network (sociolinguistics)","level":3,"score":0.51497704},{"id":"https://openalex.org/C2778136018","wikidata":"https://www.wikidata.org/wiki/Q10350689","display_name":"Predictive power","level":2,"score":0.4869674},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46037325},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.45953038},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.44993663},{"id":"https://openalex.org/C36647736","wikidata":"https://www.wikidata.org/wiki/Q5418752","display_name":"Evolving networks","level":3,"score":0.42828733},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41886938},{"id":"https://openalex.org/C34947359","wikidata":"https://www.wikidata.org/wiki/Q665189","display_name":"Complex network","level":2,"score":0.37546024},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.14418745},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11023763},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.08801022},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2740908.2741697","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.57,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1510837191","https://openalex.org/W1556758605","https://openalex.org/W1956559956","https://openalex.org/W1970165121","https://openalex.org/W1976526581","https://openalex.org/W2003707464","https://openalex.org/W2017102965","https://openalex.org/W2018156309","https://openalex.org/W2020382732","https://openalex.org/W2022867359","https://openalex.org/W2032553509","https://openalex.org/W2083922799","https://openalex.org/W2088571412","https://openalex.org/W2091019377","https://openalex.org/W2154454189","https://openalex.org/W2167467982","https://openalex.org/W2916684084","https://openalex.org/W3845198","https://openalex.org/W4235526601","https://openalex.org/W44377596"],"related_works":["https://openalex.org/W4297825999","https://openalex.org/W3195092236","https://openalex.org/W3188394569","https://openalex.org/W3170880007","https://openalex.org/W3157841866","https://openalex.org/W3112909261","https://openalex.org/W2944759572","https://openalex.org/W2910143252","https://openalex.org/W2368072647","https://openalex.org/W2187556559"],"abstract_inverted_index":{"In":[0],"the":[1,21,32,52,58,69,83],"link":[2,30,36,53,121],"prediction":[3,54],"problem,":[4,10,55],"formulated":[5],"as":[6],"a":[7,29,87],"binary":[8],"classification":[9],"we":[11,56,80],"want":[12],"to":[13,68],"classify":[14],"each":[15],"pair":[16],"of":[17,44,60],"disconnected":[18],"nodes":[19],"in":[20,31,38],"network":[22,91,109],"whether":[23],"they":[24],"will":[25],"be":[26,94],"connected":[27],"by":[28,96],"future.":[33],"We":[34,104],"study":[35],"formation":[37],"social":[39,78],"networks":[40,79],"with":[41],"two":[42,76],"types":[43],"links":[45],"over":[46],"several":[47],"time":[48,102],"periods.":[49],"To":[50],"solve":[51],"follow":[57],"approach":[59],"counting":[61],"3-node":[62],"graphlets":[63],"and":[64],"suggest":[65],"three":[66],"extensions":[67],"original":[70],"method.":[71],"By":[72],"performing":[73],"experiments":[74],"on":[75],"real-world":[77],"show":[81],"that":[82,107],"new":[84],"methods":[85],"have":[86],"predictive":[88],"power,":[89],"however,":[90],"evolution":[92],"cannot":[93],"explained":[95],"one":[97],"specific":[98],"feature":[99],"at":[100,113],"all":[101],"points.":[103],"also":[105],"observe":[106],"some":[108],"properties":[110],"can":[111],"point":[112],"features":[114],"which":[115],"are":[116],"more":[117],"effective":[118],"for":[119],"temporal":[120],"prediction.":[122]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1083218774","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2}],"updated_date":"2024-12-10T00:27:15.968570","created_date":"2016-06-24"}