{"id":"https://openalex.org/W2059298213","doi":"https://doi.org/10.1145/2452376.2452448","title":"A performance comparison of parallel DBMSs and MapReduce on large-scale text analytics","display_name":"A performance comparison of parallel DBMSs and MapReduce on large-scale text analytics","publication_year":2013,"publication_date":"2013-03-18","ids":{"openalex":"https://openalex.org/W2059298213","doi":"https://doi.org/10.1145/2452376.2452448","mag":"2059298213"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2452376.2452448","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100405394","display_name":"Fei Chen","orcid":"https://orcid.org/0000-0002-4191-8163"},"institutions":[{"id":"https://openalex.org/I1324840837","display_name":"Hewlett-Packard (United States)","ror":"https://ror.org/059rn9488","country_code":"US","type":"funder","lineage":["https://openalex.org/I1324840837"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fei Chen","raw_affiliation_strings":["HP Labs,"],"affiliations":[{"raw_affiliation_string":"HP Labs,","institution_ids":["https://openalex.org/I1324840837"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109925930","display_name":"Meichun Hsu","orcid":null},"institutions":[{"id":"https://openalex.org/I1324840837","display_name":"Hewlett-Packard (United States)","ror":"https://ror.org/059rn9488","country_code":"US","type":"funder","lineage":["https://openalex.org/I1324840837"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Meichun Hsu","raw_affiliation_strings":["HP Labs,"],"affiliations":[{"raw_affiliation_string":"HP Labs,","institution_ids":["https://openalex.org/I1324840837"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.967,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.750955,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"613","last_page":"624"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10317","display_name":"Advanced Database Systems and Queries","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7616136}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8809736},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7616136},{"id":"https://openalex.org/C79158427","wikidata":"https://www.wikidata.org/wiki/Q485396","display_name":"Analytics","level":2,"score":0.7177041},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.61742795},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.51358676},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.396981},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.30024746},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2452376.2452448","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.6,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1534730506","https://openalex.org/W1564316993","https://openalex.org/W1967093902","https://openalex.org/W1993892970","https://openalex.org/W2003683276","https://openalex.org/W2006149654","https://openalex.org/W2034797903","https://openalex.org/W2035266017","https://openalex.org/W2035367810","https://openalex.org/W2046020929","https://openalex.org/W2090850279","https://openalex.org/W2093808275","https://openalex.org/W2096765155","https://openalex.org/W2096797897","https://openalex.org/W2103128401","https://openalex.org/W2114303224","https://openalex.org/W2123866731","https://openalex.org/W2126399065","https://openalex.org/W2134414349","https://openalex.org/W2135209143","https://openalex.org/W2141099517","https://openalex.org/W2141922908","https://openalex.org/W2144416276","https://openalex.org/W2151234409","https://openalex.org/W2151930506","https://openalex.org/W2152749438","https://openalex.org/W2161936973","https://openalex.org/W2168160104","https://openalex.org/W2913389685","https://openalex.org/W2951981277"],"related_works":["https://openalex.org/W4394895745","https://openalex.org/W4390608645","https://openalex.org/W4321353415","https://openalex.org/W4247566972","https://openalex.org/W3158763334","https://openalex.org/W3090563135","https://openalex.org/W2960264696","https://openalex.org/W2745001401","https://openalex.org/W2497432351","https://openalex.org/W2378211422"],"abstract_inverted_index":{"Text":[0],"analytics":[1],"has":[2,23,38],"become":[3],"increasingly":[4],"important":[5,66],"with":[6],"the":[7,100],"rapid":[8],"growth":[9],"of":[10,102],"text":[11],"data.":[12],"Particularly,":[13],"information":[14],"extraction":[15],"(IE),":[16],"which":[17,80,122],"extracts":[18],"structured":[19],"data":[20],"from":[21,50],"text,":[22],"received":[24],"significant":[25],"attention.":[26],"Unfortunately,":[27],"IE":[28,57,108,120,129],"is":[29,82,153],"often":[30],"computationally":[31],"intensive.":[32],"To":[33],"address":[34],"this":[35,91],"issue,":[36],"MapReduce":[37,71],"been":[39,124],"used":[40,126],"for":[41,76,86,105,157],"large":[42,77,87,106,158],"scale":[43,78,88,107,159],"IE.":[44,160],"Recently,":[45],"there":[46],"are":[47,75],"emerging":[48],"efforts":[49],"both":[51,70,103,113,139],"academia":[52],"and":[53,65,72,117,141],"industry":[54],"on":[55,138,144],"pushing":[56],"inside":[58],"DBMSs.":[59],"This":[60],"leads":[61],"to":[62,97,134],"an":[63],"interesting":[64],"question:":[67],"Given":[68],"that":[69,150],"parallel":[73,151],"DBMSs":[74,152],"analytics,":[79],"platform":[81],"a":[83,95,154],"better":[84],"choice":[85],"IE?":[89],"In":[90],"paper,":[92],"we":[93],"propose":[94],"benchmark":[96,111],"systematically":[98],"study":[99],"performance":[101],"platforms":[104,140],"tasks.":[109,130],"The":[110],"includes":[112],"statistical":[114],"learning":[115],"based":[116,119],"rule":[118],"programs,":[121],"have":[123],"extensively":[125],"in":[127],"real-world":[128,145],"We":[131],"show":[132,149],"how":[133],"express":[135],"these":[136],"programs":[137],"conduct":[142],"experiments":[143],"datasets.":[146],"Our":[147],"results":[148],"viable":[155],"alternative":[156]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2059298213","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2025-03-19T05:16:24.681146","created_date":"2016-06-24"}