{"id":"https://openalex.org/W2044325247","doi":"https://doi.org/10.1145/2389686.2389692","title":"Feature selection for link prediction","display_name":"Feature selection for link prediction","publication_year":2012,"publication_date":"2012-11-02","ids":{"openalex":"https://openalex.org/W2044325247","doi":"https://doi.org/10.1145/2389686.2389692","mag":"2044325247"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2389686.2389692","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101618178","display_name":"Ye Xu","orcid":"https://orcid.org/0000-0003-2135-0387"},"institutions":[{"id":"https://openalex.org/I107672454","display_name":"Dartmouth College","ror":"https://ror.org/049s0rh22","country_code":"US","type":"education","lineage":["https://openalex.org/I107672454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ye Xu","raw_affiliation_strings":[" Dartmouth College, Hanover NH, USA"],"affiliations":[{"raw_affiliation_string":" Dartmouth College, Hanover NH, USA","institution_ids":["https://openalex.org/I107672454"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111737218","display_name":"Dan Rockmore","orcid":null},"institutions":[{"id":"https://openalex.org/I107672454","display_name":"Dartmouth College","ror":"https://ror.org/049s0rh22","country_code":"US","type":"education","lineage":["https://openalex.org/I107672454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dan Rockmore","raw_affiliation_strings":[" Dartmouth College, Hanover NH, USA"],"affiliations":[{"raw_affiliation_string":" Dartmouth College, Hanover NH, USA","institution_ids":["https://openalex.org/I107672454"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.104,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":20,"citation_normalized_percentile":{"value":0.866782,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"25","last_page":"32"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6685143},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6409408},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.5085095},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.46681902}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.7149049},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6881249},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6685143},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6409408},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6106682},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.6007832},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53474015},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5085095},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.5023265},{"id":"https://openalex.org/C56086750","wikidata":"https://www.wikidata.org/wiki/Q6042592","display_name":"Integer programming","level":2,"score":0.47002363},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.46681902},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46536517},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42984325},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4227043},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.15276447},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2389686.2389692","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.71}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1532221965","https://openalex.org/W1574862351","https://openalex.org/W160606798","https://openalex.org/W180717754","https://openalex.org/W1966553486","https://openalex.org/W1979104937","https://openalex.org/W2003398838","https://openalex.org/W2003707464","https://openalex.org/W2019786737","https://openalex.org/W2019854450","https://openalex.org/W2037705937","https://openalex.org/W2049607688","https://openalex.org/W2067952552","https://openalex.org/W2069153192","https://openalex.org/W2069769252","https://openalex.org/W2103235295","https://openalex.org/W2107014760","https://openalex.org/W2107569009","https://openalex.org/W2109248504","https://openalex.org/W2117831564","https://openalex.org/W2124225314","https://openalex.org/W2125082260","https://openalex.org/W2125641589","https://openalex.org/W2128269848","https://openalex.org/W2130354913","https://openalex.org/W2136116685","https://openalex.org/W2148606196","https://openalex.org/W2152088446","https://openalex.org/W2153635508","https://openalex.org/W2155186673","https://openalex.org/W2156043567","https://openalex.org/W2156571267","https://openalex.org/W2160540263","https://openalex.org/W2164598857","https://openalex.org/W2336259629","https://openalex.org/W2420733993","https://openalex.org/W2435251607","https://openalex.org/W2988480584","https://openalex.org/W3004658167","https://openalex.org/W3006449229","https://openalex.org/W3029645440","https://openalex.org/W4298299405"],"related_works":["https://openalex.org/W4388405611","https://openalex.org/W3208297503","https://openalex.org/W3119773509","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2786094008","https://openalex.org/W2619127353","https://openalex.org/W2510961579","https://openalex.org/W2050960118","https://openalex.org/W156213964"],"abstract_inverted_index":{"Networks":[0],"that":[1,161],"model":[2],"relationships":[3],"in":[4,12,23,45,163],"the":[5,13,24,38,77,80,93,101,136,156,164,174,180,183,208,224,248,251],"real":[6,213],"world":[7],"have":[8],"attracted":[9],"much":[10],"attention":[11],"past":[14],"few":[15],"years.":[16],"Link":[17,115],"prediction":[18,40,48,103,132],"plays":[19],"a":[20,120,125,217,243],"central":[21],"role":[22],"network":[25,240],"area.":[26],"Supervised":[27],"learning":[28,61],"is":[29,50,85,168,204,220],"an":[30,58],"important":[31,59],"class":[32],"of":[33,79,95,139,182,250],"algorithms":[34],"used":[35,205],"to":[36,53,63,92,129,154,206,222],"address":[37,130],"link":[39,47,89,102,131],"problem.":[41],"A":[42],"big":[43],"challenge":[44],"solving":[46],"tasks":[49],"deciding":[51],"how":[52],"choose":[54],"relevant":[55,65,87],"features.":[56],"As":[57],"machine":[60],"technique":[62],"select":[64,144],"features,":[66],"feature":[67,98,121,126,142,166,175,189,209,225],"selection":[68,99],"not":[69],"only":[70],"enhances":[71],"classification":[72],"accuracy,":[73],"but":[74],"also":[75],"improves":[76],"efficiency":[78],"training":[81],"process.":[82],"Thus,":[83,173],"it":[84],"especially":[86],"for":[88,114],"prediction.":[90],"However,":[91],"best":[94],"our":[96],"knowledge,":[97],"under":[100],"scenario":[104],"remains":[105],"unstudied.":[106],"In":[107,231],"this":[108],"paper,":[109],"we":[110,152],"propose":[111],"FEature":[112],"Selection":[113],"Prediction":[116],"(FESLP),":[117],"which":[118],"contains":[119],"ranking":[122,190,226],"algorithm":[123,128],"and":[124,143,188],"weighting":[127,187,210],"tasks.":[133],"We":[134,233],"measure":[135],"discriminative":[137,149],"ability":[138],"each":[140],"individual":[141],"those":[145],"features":[146,159],"with":[147],"greatest":[148],"power.":[150],"Simultaneously,":[151],"aim":[153],"minimize":[155],"correlations":[157],"among":[158],"such":[160],"redundancy":[162],"learned":[165],"space":[167,176],"as":[169,171,195],"small":[170],"possible.":[172],"can":[177,192],"accurately":[178],"preserve":[179],"sketch":[181],"original":[184],"data.":[185],"Feature":[186],"problems":[191],"be":[193],"formalized":[194],"two":[196],"quadratic":[197],"optimization":[198],"problems.":[199],"The":[200,245],"active":[201],"set":[202],"method":[203],"solve":[207,223],"problem":[211,227],"(via":[212,228],"number":[214],"programming)":[215],"while":[216],"greedy":[218],"policy":[219],"applied":[221],"integer":[229],"programming).":[230],"experiments,":[232],"evaluate":[234],"FESLP":[235],"on":[236],"six":[237],"large-scale":[238],"email":[239],"datasets":[241],"from":[242],"university.":[244],"results":[246],"show":[247],"effectiveness":[249],"FESLP.":[252]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2044325247","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":5},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-30T13:09:45.703024","created_date":"2016-06-24"}