{"id":"https://openalex.org/W2130287054","doi":"https://doi.org/10.1145/2370216.2370248","title":"Fine-grained kitchen activity recognition using RGB-D","display_name":"Fine-grained kitchen activity recognition using RGB-D","publication_year":2012,"publication_date":"2012-09-05","ids":{"openalex":"https://openalex.org/W2130287054","doi":"https://doi.org/10.1145/2370216.2370248","mag":"2130287054"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2370216.2370248","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036482404","display_name":"Jinna Lei","orcid":null},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jinna Lei","raw_affiliation_strings":["University of Washington"],"affiliations":[{"raw_affiliation_string":"University of Washington","institution_ids":["https://openalex.org/I201448701"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101790014","display_name":"Xiaofeng Ren","orcid":"https://orcid.org/0000-0002-2120-9239"},"institutions":[{"id":"https://openalex.org/I1343180700","display_name":"Intel (United States)","ror":"https://ror.org/01ek73717","country_code":"US","type":"company","lineage":["https://openalex.org/I1343180700"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaofeng Ren","raw_affiliation_strings":["Intel Labs"],"affiliations":[{"raw_affiliation_string":"Intel Labs","institution_ids":["https://openalex.org/I1343180700"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108257764","display_name":"Dieter Fox","orcid":"https://orcid.org/0009-0009-4694-9127"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dieter Fox","raw_affiliation_strings":["University of Washington"],"affiliations":[{"raw_affiliation_string":"University of Washington","institution_ids":["https://openalex.org/I201448701"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.409,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":127,"citation_normalized_percentile":{"value":0.970556,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Gesture Recognition in Human-Computer Interaction","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.7700013},{"id":"https://openalex.org/keywords/gesture-recognition","display_name":"Gesture Recognition","score":0.565514},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity recognition","score":0.56389445},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.540489},{"id":"https://openalex.org/keywords/kinect-sensor","display_name":"Kinect Sensor","score":0.539283},{"id":"https://openalex.org/keywords/motion-detection","display_name":"Motion Detection","score":0.521924},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.47578087}],"concepts":[{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.7700013},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71154326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69273794},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6515214},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.56389445},{"id":"https://openalex.org/C26760741","wikidata":"https://www.wikidata.org/wiki/Q160402","display_name":"Perception","level":2,"score":0.50486356},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.47578087},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.45430169},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2370216.2370248","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W100282330","https://openalex.org/W2020163092","https://openalex.org/W2020993063","https://openalex.org/W2033639255","https://openalex.org/W2074142320","https://openalex.org/W2100642335","https://openalex.org/W2110683162","https://openalex.org/W2122991029","https://openalex.org/W2155983176","https://openalex.org/W2162762857","https://openalex.org/W2166294429","https://openalex.org/W2172156083","https://openalex.org/W2213271652"],"related_works":["https://openalex.org/W3195649134","https://openalex.org/W2944566775","https://openalex.org/W2892259437","https://openalex.org/W2610664080","https://openalex.org/W2506504620","https://openalex.org/W2281498195","https://openalex.org/W2188304107","https://openalex.org/W2131801795","https://openalex.org/W2084086966","https://openalex.org/W2017526120"],"abstract_inverted_index":{"We":[0],"present":[1],"a":[2,27,88],"first":[3],"study":[4],"of":[5,13,29,59,84,114],"using":[6],"RGB-D":[7,60,100],"(Kinect-style)":[8],"cameras":[9],"for":[10,33,64,79],"fine-grained":[11,104],"recognition":[12,106],"kitchen":[14],"activities.":[15],"Our":[16,53],"prototype":[17],"system":[18,67],"combines":[19],"depth":[20],"(shape)":[21],"and":[22,41,46,71,116],"color":[23],"(appearance)":[24],"to":[25,103,119],"solve":[26],"number":[28],"perception":[30],"problems":[31],"crucial":[32],"smart":[34],"space":[35],"applications:":[36],"locating":[37],"hands,":[38],"identifying":[39],"objects":[40],"their":[42],"functionalities,":[43],"recognizing":[44],"actions":[45],"tracking":[47],"object":[48],"state":[49],"changes":[50],"through":[51,76],"actions.":[52],"proof-of-concept":[54],"results":[55],"demonstrate":[56],"great":[57],"potentials":[58],"perception:":[61],"without":[62],"need":[63],"instrumentation,":[65],"our":[66],"can":[68],"robustly":[69],"track":[70],"accurately":[72],"recognize":[73],"detailed":[74],"steps":[75],"cooking":[77],"activities,":[78],"instance":[80],"how":[81,92],"many":[82],"spoons":[83],"sugar":[85],"are":[86],"in":[87,107],"cake":[89],"mix,":[90],"or":[91],"long":[93],"it":[94],"has":[95],"been":[96],"mixing.":[97],"A":[98],"robust":[99],"based":[101],"solution":[102],"activity":[105],"real-world":[108],"conditions":[109],"will":[110],"bring":[111],"the":[112,120],"intelligence":[113],"pervasive":[115],"interactive":[117],"systems":[118],"next":[121],"level.":[122]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2130287054","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":16},{"year":2018,"cited_by_count":9},{"year":2017,"cited_by_count":18},{"year":2016,"cited_by_count":21},{"year":2015,"cited_by_count":17},{"year":2014,"cited_by_count":14},{"year":2013,"cited_by_count":8}],"updated_date":"2024-11-20T01:17:01.241671","created_date":"2016-06-24"}