{"id":"https://openalex.org/W2099815050","doi":"https://doi.org/10.1145/2339530.2339587","title":"Detecting changes of clustering structures using normalized maximum likelihood coding","display_name":"Detecting changes of clustering structures using normalized maximum likelihood coding","publication_year":2012,"publication_date":"2012-08-12","ids":{"openalex":"https://openalex.org/W2099815050","doi":"https://doi.org/10.1145/2339530.2339587","mag":"2099815050"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2339530.2339587","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068380711","display_name":"So Hirai","orcid":"https://orcid.org/0000-0002-0068-6968"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"So Hirai","raw_affiliation_strings":["Graduate School of Information Science and Technologies The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technologies The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021981442","display_name":"Kenji Yamanishi","orcid":"https://orcid.org/0000-0001-7370-9991"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kenji Yamanishi","raw_affiliation_strings":["Graduate School of Information Science and Technologies The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technologies The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.256,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":26,"citation_normalized_percentile":{"value":0.94373,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/minimum-description-length","display_name":"Minimum description length","score":0.7361052},{"id":"https://openalex.org/keywords/single-linkage-clustering","display_name":"Single-linkage clustering","score":0.47295472}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.84921354},{"id":"https://openalex.org/C87465248","wikidata":"https://www.wikidata.org/wiki/Q1417790","display_name":"Minimum description length","level":2,"score":0.7361052},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5769871},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.54285735},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.47709876},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47689012},{"id":"https://openalex.org/C22648726","wikidata":"https://www.wikidata.org/wiki/Q7523744","display_name":"Single-linkage clustering","level":5,"score":0.47295472},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.44827366},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.44408044},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.4364841},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42238924},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39333338},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38664177},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35728496},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.22885758},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15948042}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2339530.2339587","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.48,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1533169541","https://openalex.org/W1965626898","https://openalex.org/W1980971799","https://openalex.org/W1999120268","https://openalex.org/W2033178790","https://openalex.org/W2049633694","https://openalex.org/W2056552633","https://openalex.org/W20919710","https://openalex.org/W2137446376","https://openalex.org/W2142635246","https://openalex.org/W2152523756","https://openalex.org/W2155640700","https://openalex.org/W2168175751","https://openalex.org/W2171911691","https://openalex.org/W2183235533","https://openalex.org/W2293546752","https://openalex.org/W3149745985","https://openalex.org/W586629642"],"related_works":["https://openalex.org/W4241767317","https://openalex.org/W3092684173","https://openalex.org/W2559422900","https://openalex.org/W2188840951","https://openalex.org/W2171610853","https://openalex.org/W2160785859","https://openalex.org/W2103650652","https://openalex.org/W2101637161","https://openalex.org/W1999117613","https://openalex.org/W1887359504"],"abstract_inverted_index":{"We":[0,101,130,148],"are":[1],"concerned":[2],"with":[3,83],"the":[4,17,20,37,40,64,70,98,140],"issue":[5],"of":[6,9,19,32,39,60,91,97,142,157,164],"detecting":[7],"changes":[8,31,48,117,156,163],"clustering":[10,33,47,84],"structures":[11,34],"from":[12,93],"multivariate":[13],"time":[14],"series.":[15],"From":[16],"viewpoint":[18],"minimum":[21],"description":[22],"length(MDL)":[23],"principle,":[24],"we":[25,52],"propose":[26],"an":[27,122],"algorithm":[28,78,144],"that":[29,36,45,108,150],"tracks":[30],"so":[35],"sum":[38],"code-length":[41,65],"for":[42,46,66],"data":[43,67,106,136],"and":[44,62,127],"is":[49,112,152],"minimum.":[50],"Here":[51],"employ":[53],"a":[54,94],"Gaussian":[55],"mixture":[56],"model(GMM)":[57],"as":[58],"representation":[59],"clustering,":[61],"compute":[63],"sequences":[68],"using":[69,104],"normalized":[71],"maximum":[72],"likelihood":[73],"(NML)":[74],"coding.":[75],"The":[76],"proposed":[77,110],"enables":[79],"us":[80],"to":[81,114,138,154,162],"deal":[82],"dynamics":[85],"including":[86],"merging,":[87],"splitting,":[88],"emergence,":[89],"disappearance":[90],"clusters":[92],"unifying":[95],"view":[96],"MDL":[99],"principle.":[100],"empirically":[102],"demonstrate":[103,139],"artificial":[105],"sets":[107,137],"our":[109,143],"method":[111,126],"able":[113,153],"detect":[115,155],"cluster":[116],"significantly":[118],"more":[119],"accurately":[120],"than":[121],"existing":[123],"statistical-test":[124],"based":[125],"AIC/BIC-based":[128],"methods.":[129],"further":[131],"use":[132],"real":[133,165],"customers'":[134],"transaction":[135],"validity":[141],"in":[145],"market":[146,166],"analysis.":[147],"show":[149],"it":[151],"customer":[158],"groups,":[159],"which":[160],"correspond":[161],"environments.":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2099815050","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":3},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":3}],"updated_date":"2025-01-03T13:09:31.650483","created_date":"2016-06-24"}