{"id":"https://openalex.org/W2023907142","doi":"https://doi.org/10.1145/2124295.2124306","title":"Mining contrastive opinions on political texts using cross-perspective topic model","display_name":"Mining contrastive opinions on political texts using cross-perspective topic model","publication_year":2012,"publication_date":"2012-02-08","ids":{"openalex":"https://openalex.org/W2023907142","doi":"https://doi.org/10.1145/2124295.2124306","mag":"2023907142"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2124295.2124306","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101972978","display_name":"Yi Fang","orcid":"https://orcid.org/0000-0001-6572-4315"},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yi Fang","raw_affiliation_strings":["Purdue University, West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Purdue University, West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101718341","display_name":"Luo Si","orcid":"https://orcid.org/0000-0002-3263-234X"},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Luo Si","raw_affiliation_strings":["Purdue University, West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Purdue University, West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016824215","display_name":"Naveen Somasundaram","orcid":null},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Naveen Somasundaram","raw_affiliation_strings":["Purdue University, West Lafayette, IN, USA"],"affiliations":[{"raw_affiliation_string":"Purdue University, West Lafayette, IN, USA","institution_ids":["https://openalex.org/I219193219"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100619287","display_name":"Zhengtao Yu","orcid":"https://orcid.org/0000-0002-4012-461X"},"institutions":[{"id":"https://openalex.org/I10660446","display_name":"Kunming University of Science and Technology","ror":"https://ror.org/00xyeez13","country_code":"CN","type":"education","lineage":["https://openalex.org/I10660446"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengtao Yu","raw_affiliation_strings":["Kunming University of Science and Technology, Kunming, CHINA"],"affiliations":[{"raw_affiliation_string":"Kunming University of Science and Technology, Kunming, CHINA","institution_ids":["https://openalex.org/I10660446"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.295,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":116,"citation_normalized_percentile":{"value":0.999878,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"63","last_page":"72"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.45929992},{"id":"https://openalex.org/keywords/divergence","display_name":"Divergence (linguistics)","score":0.41827384}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.784554},{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.7479662},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.61052805},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.54099846},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5317285},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.47778687},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47566384},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.47162867},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.45929992},{"id":"https://openalex.org/C2778137410","wikidata":"https://www.wikidata.org/wiki/Q2732820","display_name":"Government (linguistics)","level":2,"score":0.4495753},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.44391516},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.42305088},{"id":"https://openalex.org/C207390915","wikidata":"https://www.wikidata.org/wiki/Q1230525","display_name":"Divergence (linguistics)","level":2,"score":0.41827384},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.24505574},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08620912},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/2124295.2124306","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.5,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1503333931","https://openalex.org/W1532325895","https://openalex.org/W1569041844","https://openalex.org/W1581485226","https://openalex.org/W1880262756","https://openalex.org/W1964613733","https://openalex.org/W1967807490","https://openalex.org/W1969138419","https://openalex.org/W1994361353","https://openalex.org/W2001082470","https://openalex.org/W2017238344","https://openalex.org/W2018650704","https://openalex.org/W2020842694","https://openalex.org/W2041314074","https://openalex.org/W2042297108","https://openalex.org/W2044429219","https://openalex.org/W2048064382","https://openalex.org/W2061806977","https://openalex.org/W2081375810","https://openalex.org/W2096110600","https://openalex.org/W2097726431","https://openalex.org/W2108420397","https://openalex.org/W2112247328","https://openalex.org/W2112422413","https://openalex.org/W2123119821","https://openalex.org/W2126854223","https://openalex.org/W2129294185","https://openalex.org/W2136161746","https://openalex.org/W2140855027","https://openalex.org/W2141631351","https://openalex.org/W2145321263","https://openalex.org/W2146950091","https://openalex.org/W2149537132","https://openalex.org/W2154970197","https://openalex.org/W2166706824","https://openalex.org/W2184342832","https://openalex.org/W2199803028","https://openalex.org/W3016527559","https://openalex.org/W4205184193","https://openalex.org/W4213009331","https://openalex.org/W42450573"],"related_works":["https://openalex.org/W4323520239","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2593058442","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"This":[0,51],"paper":[1],"presents":[2],"a":[3,21,70,121],"novel":[4,71],"opinion":[5,59,77,86,98],"mining":[6],"research":[7],"problem,":[8],"which":[9],"is":[10,33],"called":[11],"Contrastive":[12],"Opinion":[13],"Modeling":[14],"(COM).":[15],"Given":[16],"any":[17],"query":[18],"topic":[19,73],"and":[20,45,61,65,170,179],"set":[22,135],"of":[23,31,38,84,92,115,136,156,186],"text":[24],"collections":[25],"from":[26,163],"multiple":[27],"perspectives,":[28],"the":[29,36,39,43,81,90,107,111,125,129,143,150,184,187],"task":[30],"COM":[32],"to":[34,47,141],"present":[35],"opinions":[37],"individual":[40,130],"perspectives":[41,116],"on":[42,106,146],"topic,":[44],"furthermore":[46],"quantify":[48],"their":[49],"difference.":[50],"general":[52],"problem":[53],"subsumes":[54],"many":[55],"interesting":[56],"applications,":[57],"including":[58],"summarization":[60],"forecasting,":[62],"government":[63],"intelligence":[64],"cross-cultural":[66],"studies.":[67],"We":[68],"propose":[69],"unsupervised":[72],"model":[74,145],"for":[75],"contrastive":[76],"modeling.":[78],"It":[79],"simulates":[80],"generative":[82],"process":[83,100],"how":[85],"words":[87],"occur":[88],"in":[89,110,120,149,167],"documents":[91],"different":[93],"collections.":[94],"The":[95,113,173],"ad":[96],"hoc":[97],"search":[99],"can":[101,117],"be":[102,118],"efficiently":[103],"accomplished":[104],"based":[105],"learned":[108],"parameters":[109],"model.":[112,189],"difference":[114],"quantified":[119],"principled":[122],"way":[123],"by":[124],"Jensen-Shannon":[126],"divergence":[127],"among":[128],"topic-opinion":[131],"distributions.":[132],"An":[133],"extensive":[134],"experiments":[137],"have":[138,182],"been":[139],"conducted":[140],"evaluate":[142],"proposed":[144,188],"two":[147],"datasets":[148],"political":[151],"domain:":[152],"1)":[153],"statement":[154],"records":[155],"U.S.":[157],"senators;":[158],"2)":[159],"world":[160],"news":[161],"reports":[162],"three":[164],"representative":[165],"media":[166],"U.S.,":[168],"China":[169],"India,":[171],"respectively.":[172],"experimental":[174],"results":[175],"with":[176],"both":[177],"qualitative":[178],"quantitative":[180],"analysis":[181],"shown":[183],"effectiveness":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2023907142","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":12},{"year":2017,"cited_by_count":10},{"year":2016,"cited_by_count":19},{"year":2015,"cited_by_count":17},{"year":2014,"cited_by_count":6},{"year":2013,"cited_by_count":11},{"year":2012,"cited_by_count":5}],"updated_date":"2025-01-05T20:00:31.674321","created_date":"2016-06-24"}