{"id":"https://openalex.org/W2037412267","doi":"https://doi.org/10.1145/1865987.1866012","title":"On efficient use of multi-view data for activity recognition","display_name":"On efficient use of multi-view data for activity recognition","publication_year":2010,"publication_date":"2010-08-31","ids":{"openalex":"https://openalex.org/W2037412267","doi":"https://doi.org/10.1145/1865987.1866012","mag":"2037412267"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1865987.1866012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003432095","display_name":"Tommi M\u00e4\u00e4tt\u00e4","orcid":null},"institutions":[{"id":"https://openalex.org/I83019370","display_name":"Eindhoven University of Technology","ror":"https://ror.org/02c2kyt77","country_code":"NL","type":"education","lineage":["https://openalex.org/I83019370"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Tommi M\u00e4\u00e4tt\u00e4","raw_affiliation_strings":["University of Technology, Eindhoven, The Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Technology, Eindhoven, The Netherlands","institution_ids":["https://openalex.org/I83019370"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105460983","display_name":"Aki H\u00e4rm\u00e4","orcid":"https://orcid.org/0000-0002-2966-3305"},"institutions":[{"id":"https://openalex.org/I4210122849","display_name":"Philips (Netherlands)","ror":"https://ror.org/02p2bgp27","country_code":"NL","type":"company","lineage":["https://openalex.org/I4210122849"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Aki H\u00e4rm\u00e4","raw_affiliation_strings":["Philips Research, Eindhoven, The Netherlands;"],"affiliations":[{"raw_affiliation_string":"Philips Research, Eindhoven, The Netherlands;","institution_ids":["https://openalex.org/I4210122849"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112814058","display_name":"Hamid Aghajan","orcid":null},"institutions":[{"id":"https://openalex.org/I97018004","display_name":"Stanford University","ror":"https://ror.org/00f54p054","country_code":"US","type":"education","lineage":["https://openalex.org/I97018004"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hamid Aghajan","raw_affiliation_strings":["Stanford University"],"affiliations":[{"raw_affiliation_string":"Stanford University","institution_ids":["https://openalex.org/I97018004"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.51,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.879166,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"158","last_page":"165"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.51684076},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.4829597}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77883995},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77313423},{"id":"https://openalex.org/C58103923","wikidata":"https://www.wikidata.org/wiki/Q2286025","display_name":"Silhouette","level":2,"score":0.74982643},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6386546},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.55029774},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.51684076},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.4829597},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.4752726},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45328525},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.43597493},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.427618},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.4246953},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.41181132},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40468067},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33785948},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.24554107},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1865987.1866012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1487322600","https://openalex.org/W1548793937","https://openalex.org/W1934019294","https://openalex.org/W2027913322","https://openalex.org/W2121341364","https://openalex.org/W2122420664","https://openalex.org/W2125838338","https://openalex.org/W2129887056","https://openalex.org/W2147880316"],"related_works":["https://openalex.org/W779885325","https://openalex.org/W3110435694","https://openalex.org/W30315714","https://openalex.org/W2971659033","https://openalex.org/W2393615320","https://openalex.org/W2150972844","https://openalex.org/W1997859627","https://openalex.org/W1965274140","https://openalex.org/W1906975550","https://openalex.org/W1622964048"],"abstract_inverted_index":{"The":[0,25,60,109],"focus":[1],"of":[2,68,135,152,171],"the":[3,56,66,113,162,173],"paper":[4,114],"is":[5,87,139],"on":[6,55,90,132],"studying":[7],"five":[8,61],"different":[9,148],"methods":[10,62,118,124],"to":[11,33,47,147],"combine":[12],"multi-view":[13,26,52,179],"data":[14,53],"from":[15,94],"an":[16],"uncalibrated":[17],"smart":[18],"camera":[19,167],"network":[20],"for":[21,106],"human":[22,70],"activity":[23,180],"recognition.":[24],"classification":[27],"scenarios":[28,156],"studied":[29],"can":[30,182],"be":[31,183],"divided":[32],"two":[34],"categories:":[35],"view":[36,39,46],"selection":[37,121,137],"and":[38,79,81,141,169],"fusion":[40,50,117,151],"methods.":[41,122],"Selection":[42,123],"uses":[43],"a":[44,82,98,136],"single":[45],"classify,":[48],"whereas":[49],"merges":[51],"either":[54],"feature-":[57],"or":[58],"label-level.":[59],"are":[63],"compared":[64],"in":[65,72,112,166,178],"task":[67],"classifying":[69],"activities":[71],"three":[73],"fully":[74],"annotated":[75],"datasets:":[76],"MAS,":[77],"VIHASI":[78],"HOMELAB,":[80],"combination":[83],"dataset":[84],"MAS+VIHASI.":[85],"Classification":[86],"performed":[88],"based":[89],"image":[91],"features":[92,153],"computed":[93],"silhouette":[95],"images":[96],"with":[97],"binary":[99],"tree":[100],"structured":[101],"classifier":[102],"using":[103],"1D":[104],"CRF":[105],"temporal":[107],"modeling.":[108],"results":[110],"presented":[111],"show":[115],"that":[116],"outperform":[119],"practical":[120],"have":[125],"their":[126],"advantages,":[127],"but":[128],"they":[129],"strongly":[130],"depend":[131],"how":[133,142],"good":[134],"criteria":[138,145],"used,":[140],"well":[143],"this":[144],"adapts":[146],"environments.":[149],"Furthermore,":[150],"outperforms":[154],"other":[155],"within":[157],"more":[158,163,174],"controlled":[159],"settings.":[160],"But":[161],"variability":[164],"exists":[165],"placement":[168],"characteristics":[170],"persons,":[172],"likely":[175],"improved":[176],"accuracy":[177],"recognition":[181],"achieved":[184],"by":[185],"combining":[186],"candidate":[187],"labels.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2037412267","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":4},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-14T01:15:23.466513","created_date":"2016-06-24"}