{"id":"https://openalex.org/W2004930926","doi":"https://doi.org/10.1145/1830483.1830720","title":"A covariance matrix adaptation based evolutionary methodology for phase adjustment in financial time series forecasting","display_name":"A covariance matrix adaptation based evolutionary methodology for phase adjustment in financial time series forecasting","publication_year":2010,"publication_date":"2010-07-07","ids":{"openalex":"https://openalex.org/W2004930926","doi":"https://doi.org/10.1145/1830483.1830720","mag":"2004930926"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1830483.1830720","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102773090","display_name":"Ricardo de A. Ara\u00fajo","orcid":"https://orcid.org/0000-0003-2708-5350"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ricardo de A. Ara\u00fajo","raw_affiliation_strings":["[gm]\u00b2 Intelligent Systems, Campinas, Brazil"],"affiliations":[{"raw_affiliation_string":"[gm]\u00b2 Intelligent Systems, Campinas, Brazil","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100615438","display_name":"Adriano L. I. Oliveira","orcid":"https://orcid.org/0000-0002-5614-229X"},"institutions":[{"id":"https://openalex.org/I62921916","display_name":"Universidade Federal Rural de Pernambuco","ror":"https://ror.org/02ksmb993","country_code":"BR","type":"education","lineage":["https://openalex.org/I62921916"]},{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Adriano L.I. de Oliveira","raw_affiliation_strings":["Rural Federal University of Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Rural Federal University of Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I62921916","https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029015672","display_name":"S\u00e9rgio Soares","orcid":"https://orcid.org/0000-0002-4428-2535"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Sergio C.B. Soares","raw_affiliation_strings":["Federal University of Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.414,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.351044,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":64,"max":71},"biblio":{"volume":null,"issue":null,"first_page":"1315","last_page":"1316"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cma-es","display_name":"CMA-ES","score":0.82834816},{"id":"https://openalex.org/keywords/load-forecasting","display_name":"Load Forecasting","score":0.517234},{"id":"https://openalex.org/keywords/time-series-forecasting","display_name":"Time Series Forecasting","score":0.504453},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.48590222},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.4488976}],"concepts":[{"id":"https://openalex.org/C205555498","wikidata":"https://www.wikidata.org/wiki/Q505588","display_name":"CMA-ES","level":4,"score":0.82834816},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.67357844},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6589289},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.58668125},{"id":"https://openalex.org/C207002847","wikidata":"https://www.wikidata.org/wiki/Q2912857","display_name":"Evolution strategy","level":3,"score":0.58106583},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.55294853},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.48590222},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.45547485},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.44933224},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.4488976},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4186498},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.37855107},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3766865},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.353968},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3529507},{"id":"https://openalex.org/C159149176","wikidata":"https://www.wikidata.org/wiki/Q14489129","display_name":"Evolutionary algorithm","level":2,"score":0.33274072},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31731576},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24120337},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15932468},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.100553215},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1830483.1830720","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W102487131","https://openalex.org/W1994030410","https://openalex.org/W2008442094","https://openalex.org/W2313953460","https://openalex.org/W2462066922"],"related_works":["https://openalex.org/W4212806423","https://openalex.org/W4211082860","https://openalex.org/W3119219900","https://openalex.org/W2926551842","https://openalex.org/W2510724351","https://openalex.org/W2022594112","https://openalex.org/W1994560683","https://openalex.org/W1987433714","https://openalex.org/W1579744901","https://openalex.org/W1492325323"],"abstract_inverted_index":{"In":[0],"this":[1],"paper":[2],"we":[3],"present":[4],"a":[5,27],"methodology,":[6],"called":[7],"covariance":[8],"matrix":[9],"adaptation":[10],"based":[11],"evolutionary":[12],"(CMAbE),":[13],"to":[14,51,96],"solve":[15],"the":[16,37,46,53,62,78,89],"financial":[17,85],"time":[18,49,54,86],"series":[19,55],"forecasting":[20],"problem.":[21],"The":[22],"proposed":[23,79],"methodology":[24,80],"consists":[25],"of":[26,31,69],"hybrid":[28],"model":[29],"composed":[30],"multilayer":[32],"perceptrons":[33],"(MLPs)":[34],"combined":[35],"with":[36,77,99],"Covariance":[38],"Matrix":[39],"Adaptation":[40],"Evolution":[41],"Strategy":[42],"(CMAES),":[43],"which":[44],"determines":[45],"most":[47],"fitted":[48],"lags":[50],"characterize":[52],"phenomenon,":[56],"as":[57,59],"well":[58],"searches":[60],"for":[61],"best":[63],"architecture,":[64],"parameters":[65],"and":[66,88,94],"training":[67],"algorithm":[68],"MLP":[70],"networks.":[71],"An":[72],"experimental":[73],"analysis":[74],"is":[75],"conducted":[76],"through":[81],"two":[82],"real":[83],"world":[84],"series,":[87],"obtained":[90],"results":[91,97],"are":[92],"discussed":[93],"compared":[95],"found":[98],"recently":[100],"methods":[101],"presented":[102],"in":[103],"literature.":[104]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2004930926","counts_by_year":[],"updated_date":"2024-12-05T04:43:32.050383","created_date":"2016-06-24"}