{"id":"https://openalex.org/W1988755690","doi":"https://doi.org/10.1145/1806672.1806688","title":"Learning universal probabilistic models for fault localization","display_name":"Learning universal probabilistic models for fault localization","publication_year":2010,"publication_date":"2010-05-06","ids":{"openalex":"https://openalex.org/W1988755690","doi":"https://doi.org/10.1145/1806672.1806688","mag":"1988755690"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1806672.1806688","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081240542","display_name":"Min Feng","orcid":"https://orcid.org/0000-0002-0107-0196"},"institutions":[{"id":"https://openalex.org/I103635307","display_name":"University of California, Riverside","ror":"https://ror.org/03nawhv43","country_code":"US","type":"education","lineage":["https://openalex.org/I103635307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Min Feng","raw_affiliation_strings":["[University of California at Riverside, Riverside, CA, USA]"],"affiliations":[{"raw_affiliation_string":"[University of California at Riverside, Riverside, CA, USA]","institution_ids":["https://openalex.org/I103635307"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100699251","display_name":"Rajiv Gupta","orcid":"https://orcid.org/0000-0002-9348-3974"},"institutions":[{"id":"https://openalex.org/I103635307","display_name":"University of California, Riverside","ror":"https://ror.org/03nawhv43","country_code":"US","type":"education","lineage":["https://openalex.org/I103635307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rajiv Gupta","raw_affiliation_strings":["[University of California at Riverside, Riverside, CA, USA]"],"affiliations":[{"raw_affiliation_string":"[University of California at Riverside, Riverside, CA, USA]","institution_ids":["https://openalex.org/I103635307"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.582,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":27,"citation_normalized_percentile":{"value":0.943355,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"81","last_page":"88"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10743","display_name":"Software Testing and Debugging Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10743","display_name":"Software Testing and Debugging Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12423","display_name":"Software Reliability and Analysis Research","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/control-flow-graph","display_name":"Control flow graph","score":0.4586397},{"id":"https://openalex.org/keywords/probabilistic-argumentation","display_name":"Probabilistic argumentation","score":0.43628052},{"id":"https://openalex.org/keywords/operand","display_name":"Operand","score":0.4134293}],"concepts":[{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.7837851},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77631974},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5055468},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4791243},{"id":"https://openalex.org/C27458966","wikidata":"https://www.wikidata.org/wiki/Q1187693","display_name":"Control flow graph","level":2,"score":0.4586397},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44557735},{"id":"https://openalex.org/C128828806","wikidata":"https://www.wikidata.org/wiki/Q7246848","display_name":"Probabilistic argumentation","level":3,"score":0.43628052},{"id":"https://openalex.org/C24404364","wikidata":"https://www.wikidata.org/wiki/Q7246846","display_name":"Probabilistic analysis of algorithms","level":3,"score":0.41767573},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.41525126},{"id":"https://openalex.org/C55526617","wikidata":"https://www.wikidata.org/wiki/Q719375","display_name":"Operand","level":2,"score":0.4134293},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2765919},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1806672.1806688","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1526990002","https://openalex.org/W175463218","https://openalex.org/W1968847337","https://openalex.org/W1984248430","https://openalex.org/W2010825534","https://openalex.org/W2036196659","https://openalex.org/W2049073556","https://openalex.org/W2101819268","https://openalex.org/W2105691657","https://openalex.org/W2110066339","https://openalex.org/W2110137598","https://openalex.org/W2121081915","https://openalex.org/W2123659430","https://openalex.org/W2127961981","https://openalex.org/W2130745898","https://openalex.org/W2133074421","https://openalex.org/W2134691366","https://openalex.org/W2136938453","https://openalex.org/W2137008041","https://openalex.org/W2149263382","https://openalex.org/W2155704892","https://openalex.org/W2156357889","https://openalex.org/W2162376048","https://openalex.org/W2166007208","https://openalex.org/W21673769","https://openalex.org/W2293624369","https://openalex.org/W2544139045","https://openalex.org/W303139982","https://openalex.org/W4233319527","https://openalex.org/W4236200536","https://openalex.org/W4241947695","https://openalex.org/W4250942327","https://openalex.org/W4250981365","https://openalex.org/W4251521742","https://openalex.org/W4256251415"],"related_works":["https://openalex.org/W4236257517","https://openalex.org/W4230172440","https://openalex.org/W2556282987","https://openalex.org/W2494523064","https://openalex.org/W2119685308","https://openalex.org/W2098637578","https://openalex.org/W2050923821","https://openalex.org/W1970370079","https://openalex.org/W1585439950","https://openalex.org/W1533508804"],"abstract_inverted_index":{"Recently":[0],"there":[1],"has":[2],"been":[3,127],"significant":[4],"interest":[5],"in":[6,67,95,105,114,133,222,237],"employing":[7],"probabilistic":[8,28,41,65,70,88,182],"techniques":[9,22],"for":[10,17,31,90,146],"fault":[11,223],"localization.":[12],"Using":[13],"dynamic":[14,172],"dependence":[15,173],"information":[16],"multiple":[18,241],"passing":[19,153,229],"runs,":[20],"learning":[21],"are":[23,72,110,187,231],"used":[24,44,82,132],"to":[25,45,51,74,189,203],"construct":[26],"a":[27,32,37,63,98,119,142,158],"graph":[29],"model":[30,42,89],"given":[33,36,120],"program.":[34],"Then,":[35],"failing":[38,156],"run,":[39,157],"the":[40,47,52,76,106,115,134,162,171,176,180,191,205,211,238],"is":[43,94,167,219],"rank":[46],"executed":[48,195],"statements":[49],"according":[50],"likelihood":[53],"of":[54,78,97,118,136,144,175,193,208,240],"them":[55],"being":[56,197],"faulty.":[57,198],"In":[58],"this":[59],"paper":[60],"we":[61],"present":[62,201],"novel":[64],"approach":[66,218],"which":[68],"universal":[69,87,181],"models":[71,125],"learned":[73],"characterize":[75],"behaviors":[77],"various":[79],"instruction":[80,92,121],"types":[81],"by":[83],"all":[84],"programs.":[85],"The":[86],"an":[91],"type":[93],"form":[96],"probability":[99,192],"distribution":[100],"that":[101,216],"represents":[102],"how":[103],"errors":[104,113],"input":[107],"(operand)":[108],"values":[109],"propagated":[111],"as":[112,139],"output":[116],"(result)":[117],"type.":[122],"Once":[123],"these":[124],"have":[126],"constructed,":[128],"they":[129],"can":[130],"be":[131],"analysis":[135],"any":[137,147],"program":[138,177],"follows.":[140],"Given":[141],"set":[143],"runs":[145,178,230],"program,":[148],"including":[149],"at":[150],"least":[151],"one":[152,155],"and":[154,179],"Bayesian":[159],"network":[160],"called":[161],"Error":[163],"Flow":[164],"Graph":[165],"(EFG)":[166],"then":[168],"constructed":[169],"from":[170],"graphs":[174],"models.":[183],"Standard":[184],"inference":[185,209],"algorithms":[186],"employed":[188],"compute":[190],"each":[194],"statement":[196],"We":[199],"also":[200,234],"optimizations":[202],"reduce":[204],"runtime":[206],"cost":[207],"using":[210],"EFG.":[212],"Our":[213],"experiments":[214],"demonstrate":[215],"our":[217],"highly":[220],"effective":[221],"localization":[224],"even":[225],"when":[226],"very":[227],"few":[228],"available.":[232],"It":[233],"performs":[235],"well":[236],"presence":[239],"faults.":[242]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1988755690","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":5},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":4},{"year":2013,"cited_by_count":4},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-08T05:00:46.774829","created_date":"2016-06-24"}