{"id":"https://openalex.org/W1965327304","doi":"https://doi.org/10.1145/1653771.1653848","title":"Multi-dimensional phenomenon-aware stream query processing","display_name":"Multi-dimensional phenomenon-aware stream query processing","publication_year":2009,"publication_date":"2009-11-04","ids":{"openalex":"https://openalex.org/W1965327304","doi":"https://doi.org/10.1145/1653771.1653848","mag":"1965327304"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1653771.1653848","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020862039","display_name":"Ashish Bindra","orcid":null},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ashish Bindra","raw_affiliation_strings":["University of Washington Tacoma, WA#TAB#"],"affiliations":[{"raw_affiliation_string":"University of Washington Tacoma, WA#TAB#","institution_ids":["https://openalex.org/I201448701"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061359226","display_name":"Ankur Teredesai","orcid":"https://orcid.org/0000-0002-2112-5895"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ankur Teredesai","raw_affiliation_strings":["University of Washington Tacoma, WA#TAB#"],"affiliations":[{"raw_affiliation_string":"University of Washington Tacoma, WA#TAB#","institution_ids":["https://openalex.org/I201448701"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103350899","display_name":"Mohamed H. Ali","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mohamed H. Ali","raw_affiliation_strings":[" Microsoft Corporation, Redmond, WA"],"affiliations":[{"raw_affiliation_string":" Microsoft Corporation, Redmond, WA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000123743","display_name":"Walid G. Aref","orcid":"https://orcid.org/0000-0001-8169-7775"},"institutions":[{"id":"https://openalex.org/I219193219","display_name":"Purdue University West Lafayette","ror":"https://ror.org/02dqehb95","country_code":"US","type":"education","lineage":["https://openalex.org/I219193219"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Walid G. Aref","raw_affiliation_strings":["Purdue University, West Lafayette, IN"],"affiliations":[{"raw_affiliation_string":"Purdue University, West Lafayette, IN","institution_ids":["https://openalex.org/I219193219"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":64},"biblio":{"volume":null,"issue":null,"first_page":"476","last_page":"479"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Advanced Chemical Sensor Technologies","score":0.991,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/phenomenon","display_name":"Phenomenon","score":0.60969526},{"id":"https://openalex.org/keywords/schema","display_name":"Schema (genetic algorithms)","score":0.49514928},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.4199332}],"concepts":[{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.7961211},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7457875},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.7216005},{"id":"https://openalex.org/C50335755","wikidata":"https://www.wikidata.org/wiki/Q483247","display_name":"Phenomenon","level":2,"score":0.60969526},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.56576973},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5278608},{"id":"https://openalex.org/C52146309","wikidata":"https://www.wikidata.org/wiki/Q7431116","display_name":"Schema (genetic algorithms)","level":2,"score":0.49514928},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.4199332},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30454582},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.22702557},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.19637567},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1653771.1653848","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.49}],"grants":[{"funder":"https://openalex.org/F4320337389","funder_display_name":"Division of Information and Intelligent Systems","award_id":"IIS-0811954"}],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1552717651","https://openalex.org/W1557838010","https://openalex.org/W1562548584","https://openalex.org/W1934562893","https://openalex.org/W2020648835","https://openalex.org/W2023838152","https://openalex.org/W2105827243","https://openalex.org/W2126333155","https://openalex.org/W2126980087","https://openalex.org/W2126982545","https://openalex.org/W2129086931","https://openalex.org/W2138411791","https://openalex.org/W2168241190","https://openalex.org/W2168452204"],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W4321606653","https://openalex.org/W2885125400","https://openalex.org/W2748922771","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W2011430815","https://openalex.org/W1989889224","https://openalex.org/W1973775000"],"abstract_inverted_index":{"Geographically":[0],"co-located":[1],"sensors":[2,26,41],"tend":[3],"to":[4,22,34,126],"participate":[5,28],"in":[6,29],"the":[7,30,38,53,73,77,85,122,142,155],"same":[8],"environmental":[9],"phenomena.":[10],"Phenomenon-aware":[11],"stream":[12],"query":[13,20],"processing":[14],"improves":[15],"scalability":[16],"by":[17,91,129,144],"subscribing":[18],"each":[19],"only":[21],"a":[23,46,92,97,105],"subset":[24],"of":[25,32,40,55,79,87,124,151],"that":[27,35,42],"phenomena":[31,49,64],"interest":[33],"query.":[36],"In":[37,100],"case":[39],"generate":[43],"readings":[44],"with":[45],"multi-attribute":[47],"schema,":[48],"may":[50],"develop":[51],"across":[52,65],"values":[54],"one":[56],"or":[57],"more":[58],"attributes.":[59],"However":[60],"tracking":[61],"and":[62,83,110,137,147],"detecting":[63,146],"all":[66],"attributes":[67,88],"does":[68],"not":[69],"scale":[70],"well":[71],"as":[72,84,114],"dimensions":[74,125,132],"increase.":[75],"As":[76],"size":[78],"sensor":[80,93,118],"network":[81],"increases,":[82],"number":[86,123],"being":[89],"tracked":[90,128],"increases":[94],"this":[95,101],"becomes":[96],"major":[98],"bottleneck.":[99],"paper,":[102],"we":[103,139],"present":[104],"novel":[106],"n-dimensional":[107],"Phenomenon":[108],"Detection":[109],"Tracking":[111],"mechanism":[112],"(termed":[113],"nd-PDT)":[115],"over":[116],"n-ary":[117],"readings.":[119],"We":[120],"reduce":[121,141],"be":[127],"first":[130],"dropping":[131],"without":[133],"any":[134],"meaningful":[135],"phenomena,":[136],"then":[138],"further":[140],"dimensionality":[143],"continuously":[145],"updating":[148],"various":[149],"forms":[150],"functional":[152],"dependencies":[153],"amongst":[154],"phenomenon":[156],"dimensions.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1965327304","counts_by_year":[],"updated_date":"2024-12-15T15:24:50.125794","created_date":"2016-06-24"}