{"id":"https://openalex.org/W2031972533","doi":"https://doi.org/10.1145/1571941.1572066","title":"Deep versus shallow judgments in learning to rank","display_name":"Deep versus shallow judgments in learning to rank","publication_year":2009,"publication_date":"2009-07-19","ids":{"openalex":"https://openalex.org/W2031972533","doi":"https://doi.org/10.1145/1571941.1572066","mag":"2031972533"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1571941.1572066","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076265623","display_name":"Emine Y\u0131lmaz","orcid":"https://orcid.org/0000-0002-3434-8932"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Emine Yilmaz","raw_affiliation_strings":["Microsoft Research, Cambridge, United Kingdom ("],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Cambridge, United Kingdom (","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081925956","display_name":"Stephen Robertson","orcid":"https://orcid.org/0000-0003-4115-6215"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Stephen Robertson","raw_affiliation_strings":["Microsoft Research, Cambridge, United Kingdom ("],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Cambridge, United Kingdom (","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.634,"has_fulltext":false,"cited_by_count":29,"citation_normalized_percentile":{"value":0.910504,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"662","last_page":"663"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.6827419},{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.67624855},{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to Rank","score":0.57339126},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.5731211}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7274068},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.6827419},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.67624855},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6679073},{"id":"https://openalex.org/C151201525","wikidata":"https://www.wikidata.org/wiki/Q177239","display_name":"Limit (mathematics)","level":2,"score":0.6012083},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.57339126},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.5731211},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.5682291},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.5056536},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49948692},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.4385999},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37880597},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.30936146},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14965236},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1571941.1572066","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Partnerships for the goals","score":0.43,"id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W1985554184","https://openalex.org/W2021856948","https://openalex.org/W2128877075","https://openalex.org/W2143331230","https://openalex.org/W4251560691"],"related_works":["https://openalex.org/W4390446658","https://openalex.org/W4385565564","https://openalex.org/W3160516639","https://openalex.org/W3127142483","https://openalex.org/W2971071571","https://openalex.org/W2922169395","https://openalex.org/W2898073868","https://openalex.org/W2798835721","https://openalex.org/W2387658907","https://openalex.org/W2138488530"],"abstract_inverted_index":{"Much":[0],"research":[1],"in":[2,26,56],"learning":[3,12],"to":[4,71,112],"rank":[5],"has":[6,52],"been":[7],"placed":[8],"on":[9],"developing":[10],"sophisticated":[11],"methods,":[13],"treating":[14],"the":[15,22,27,33,36,40,86,90,95],"training":[16,28,48,102,115,131],"set":[17,29],"as":[18],"a":[19,53,113],"given.":[20],"However,":[21],"number":[23,91,96],"of":[24,35,42,58,92,97],"judgments":[25,45,61,98,123,139],"directly":[30],"aff":[31],"ects":[32],"quality":[34],"learned":[37],"system.":[38],"Given":[39],"expense":[41],"obtaining":[43],"relevance":[44],"for":[46],"constructing":[47],"data,":[49],"one":[50],"often":[51],"limited":[54],"budget":[55],"terms":[57],"how":[59,70],"many":[60],"he":[62],"can":[63],"get.":[64],"The":[65],"major":[66],"problem":[67],"then":[68],"is":[69],"distribute":[72],"this":[73,82],"judgment":[74],"e":[75],"ffort":[76],"across":[77],"diff":[78],"erent":[79],"queries.":[80],"In":[81,106],"paper,":[83],"we":[84,108],"investigate":[85],"tradeo":[87],"ff":[88],"between":[89],"queries":[93,119,135],"and":[94],"per":[99,124,140],"query":[100,125],"when":[101],"sets":[103,116,132],"are":[104,126],"constructed.":[105],"particular,":[107],"show":[109],"that":[110],"up":[111],"limit,":[114],"with":[117,133],"more":[118,127],"but":[120,136],"shallow":[121],"(less)":[122],"cost":[128],"effective":[129],"than":[130],"less":[134],"deep":[137],"(more)":[138],"query.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2031972533","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":5},{"year":2014,"cited_by_count":1},{"year":2012,"cited_by_count":3}],"updated_date":"2024-12-07T10:27:45.550455","created_date":"2016-06-24"}