{"id":"https://openalex.org/W2113607338","doi":"https://doi.org/10.1145/1367497.1367633","title":"Web video topic discovery and tracking via bipartite graph reinforcement model","display_name":"Web video topic discovery and tracking via bipartite graph reinforcement model","publication_year":2008,"publication_date":"2008-04-21","ids":{"openalex":"https://openalex.org/W2113607338","doi":"https://doi.org/10.1145/1367497.1367633","mag":"2113607338"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1367497.1367633","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100396514","display_name":"Lu Liu","orcid":"https://orcid.org/0000-0002-7496-5564"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lu Liu","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047712495","display_name":"Lifeng Sun","orcid":"https://orcid.org/0000-0002-4057-5138"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lifeng Sun","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100728762","display_name":"Yong Rui","orcid":"https://orcid.org/0000-0002-9142-5914"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yong Rui","raw_affiliation_strings":["Microsoft China R&D Group, Beijing, China#TAB#"],"affiliations":[{"raw_affiliation_string":"Microsoft China R&D Group, Beijing, China#TAB#","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033120372","display_name":"Yao Shi","orcid":"https://orcid.org/0000-0003-0068-4804"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yao Shi","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024669831","display_name":"Shiqiang Yang","orcid":"https://orcid.org/0000-0001-5356-4094"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiqiang Yang","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.344,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":61,"citation_normalized_percentile":{"value":0.913216,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"1009","last_page":"1018"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/link-analysis","display_name":"Link analysis","score":0.4466102}],"concepts":[{"id":"https://openalex.org/C197657726","wikidata":"https://www.wikidata.org/wiki/Q174733","display_name":"Bipartite graph","level":3,"score":0.843695},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7991048},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.57517534},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5052293},{"id":"https://openalex.org/C1173588","wikidata":"https://www.wikidata.org/wiki/Q6554294","display_name":"Link analysis","level":2,"score":0.4466102},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.43557066},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.25704157}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1367497.1367633","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W117170265","https://openalex.org/W1490780533","https://openalex.org/W1499013648","https://openalex.org/W1514403774","https://openalex.org/W1594112393","https://openalex.org/W1854214752","https://openalex.org/W1990806140","https://openalex.org/W2023170106","https://openalex.org/W2046624828","https://openalex.org/W2066636486","https://openalex.org/W2079234336","https://openalex.org/W2117265659","https://openalex.org/W2133576408","https://openalex.org/W2138621811","https://openalex.org/W2138775357","https://openalex.org/W2145541974","https://openalex.org/W2170344111","https://openalex.org/W2434205482"],"related_works":["https://openalex.org/W4210863386","https://openalex.org/W2999799752","https://openalex.org/W2953461625","https://openalex.org/W2748952813","https://openalex.org/W2372768926","https://openalex.org/W2371352078","https://openalex.org/W2115167491","https://openalex.org/W2080136900","https://openalex.org/W2077383796","https://openalex.org/W1008141353"],"abstract_inverted_index":{"Automatic":[0],"topic":[1,23,81,90,94,106,117],"discovery":[2,82],"and":[3,15,25,31,76,79,92,161],"tracking":[4,26],"on":[5,29,36,115,179],"web-shared":[6],"videos":[7,45,75,114,165,182],"can":[8,138],"greatly":[9],"benefit":[10],"both":[11],"web":[12,37,44,74,181],"service":[13],"providers":[14],"end":[16],"users.":[17],"Most":[18],"of":[19,22,43,51,125,145,166,193],"current":[20],"solutions":[21],"detection":[24],"were":[27],"done":[28],"news":[30,52],"cannot":[32],"be":[33,140],"directly":[34],"applied":[35],"videos,":[38],"because":[39],"the":[40,71,113,122,126,131,135,148,158,164,173,191,194],"semantic":[41],"information":[42],"is":[46,83,101,155],"much":[47],"less":[48],"than":[49],"that":[50],"videos.":[53],"In":[54],"this":[55,65],"paper,":[56],"we":[57],"propose":[58],"a":[59,97,109,143,185],"bipartite":[60,68,128,150,174],"graph":[61,69,151,175],"model":[62],"to":[63,103,156,168],"address":[64],"issue.":[66],"The":[67,153],"represents":[70],"correlation":[72],"between":[73],"their":[77],"keywords,":[78],"automatic":[80],"achieved":[84],"through":[85,172],"two":[86],"steps":[87],"-":[88],"coarse":[89,110],"filtering":[91],"fine":[93],"re-ranking.":[95],"First,":[96],"weight-updating":[98],"co-clustering":[99],"algorithm":[100],"employed":[102],"filter":[104],"out":[105],"candidates":[107],"at":[108],"level.":[111],"Then":[112],"each":[116],"are":[118,133],"re-ranked":[119],"by":[120],"analyzing":[121],"link":[123],"structures":[124],"corresponding":[127],"graph.":[129],"After":[130],"topics":[132],"discovered,":[134],"interesting":[136],"ones":[137,171],"also":[139],"tracked":[141],"over":[142],"period":[144],"time":[146],"using":[147],"same":[149],"model.":[152],"key":[154],"propagate":[157],"relevant":[159,170],"scores":[160],"keywords":[162],"from":[163,183],"interests":[167],"other":[169],"links.":[176],"Experimental":[177],"results":[178],"real":[180],"YouKu,":[184],"YouTube":[186],"counterpart":[187],"in":[188],"China,":[189],"demonstrate":[190],"effectiveness":[192],"proposed":[195],"methods.":[196],"We":[197],"report":[198],"very":[199],"promising":[200],"results.":[201]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2113607338","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":7},{"year":2014,"cited_by_count":11},{"year":2013,"cited_by_count":8},{"year":2012,"cited_by_count":9}],"updated_date":"2025-04-16T00:41:20.311231","created_date":"2016-06-24"}