{"id":"https://openalex.org/W1979492644","doi":"https://doi.org/10.1145/1330588.1330594","title":"Tagging strategies for extracting real-world events with networked sensors","display_name":"Tagging strategies for extracting real-world events with networked sensors","publication_year":2007,"publication_date":"2007-11-15","ids":{"openalex":"https://openalex.org/W1979492644","doi":"https://doi.org/10.1145/1330588.1330594","mag":"1979492644"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1330588.1330594","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113866654","display_name":"Koji Kamei","orcid":null},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Koji Kamei","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110699234","display_name":"Yutaka Yanagisawa","orcid":null},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yutaka Yanagisawa","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039456378","display_name":"Takuya Maekawa","orcid":"https://orcid.org/0000-0002-7227-580X"},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takuya Maekawa","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079868177","display_name":"Yasue Kishino","orcid":null},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasue Kishino","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089668362","display_name":"Yasushi Sakurai","orcid":"https://orcid.org/0000-0001-7258-2642"},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasushi Sakurai","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113946036","display_name":"Takeshi Okadome","orcid":null},"institutions":[{"id":"https://openalex.org/I46980622","display_name":"Kyoto Seika University","ror":"https://ror.org/05g4f0342","country_code":"JP","type":"education","lineage":["https://openalex.org/I46980622"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takeshi Okadome","raw_affiliation_strings":["NTT Corporation, Hikaridai Seika-cho Kyoto, Japan"],"affiliations":[{"raw_affiliation_string":"NTT Corporation, Hikaridai Seika-cho Kyoto, Japan","institution_ids":["https://openalex.org/I46980622"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.487582,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"35","last_page":"42"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10215","display_name":"Semantic Web and Ontologies","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/phrase","display_name":"Phrase","score":0.52890533},{"id":"https://openalex.org/keywords/sensor-web","display_name":"Sensor web","score":0.48066366}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7947528},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.7262095},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.6751694},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.62296975},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.56222296},{"id":"https://openalex.org/C2776224158","wikidata":"https://www.wikidata.org/wiki/Q187931","display_name":"Phrase","level":2,"score":0.52890533},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.48273036},{"id":"https://openalex.org/C200593801","wikidata":"https://www.wikidata.org/wiki/Q7451089","display_name":"Sensor web","level":5,"score":0.48066366},{"id":"https://openalex.org/C195324797","wikidata":"https://www.wikidata.org/wiki/Q33742","display_name":"Natural language","level":2,"score":0.43164572},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38989404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36510402},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.33830532},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.14636928},{"id":"https://openalex.org/C41971633","wikidata":"https://www.wikidata.org/wiki/Q6398155","display_name":"Key distribution in wireless sensor networks","level":4,"score":0.09466466},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.09001875},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C108037233","wikidata":"https://www.wikidata.org/wiki/Q11375","display_name":"Wireless network","level":3,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/1330588.1330594","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.83,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1524281572","https://openalex.org/W2003637680","https://openalex.org/W2019952623","https://openalex.org/W2075335577","https://openalex.org/W2105046342","https://openalex.org/W2144813746","https://openalex.org/W2145419312","https://openalex.org/W2146241808","https://openalex.org/W2161299247","https://openalex.org/W2478117180","https://openalex.org/W2760780548","https://openalex.org/W4235505822"],"related_works":["https://openalex.org/W4245354166","https://openalex.org/W2568024380","https://openalex.org/W2525537297","https://openalex.org/W2295628284","https://openalex.org/W2183058777","https://openalex.org/W2181667145","https://openalex.org/W2153485274","https://openalex.org/W2147306785","https://openalex.org/W2026087469","https://openalex.org/W1591611979"],"abstract_inverted_index":{"In":[0,20],"this":[1],"paper,":[2],"we":[3],"introduce":[4],"our":[5],"'s-room'":[6],"project":[7,33],"as":[8,10,60,62,78,88],"well":[9,61],"the":[11,18,21,44,58,73,93,144,160],"tagging":[12,137],"strategies":[13],"and":[14,43,97,118,153],"environment":[15,138],"developed":[16,135],"for":[17,39],"project.":[19],"s-room,":[22],"many":[23],"small":[24],"sensor":[25,54,94,130,155,161],"nodes":[26,55],"are":[27,75,103],"attached":[28],"to":[29,35,142],"various":[30],"objects.":[31],"Our":[32],"aims":[34],"construct":[36],"a":[37,83,89,106,110,123,136],"system":[38],"comprehending":[40],"real-world":[41],"events":[42,70,156],"properties":[45],"or":[46],"status":[47],"information":[48],"of":[49,85,150],"physical":[50],"objects":[51],"by":[52,105],"utilizing":[53],"distributed":[56],"throughout":[57],"room":[59],"general":[63],"knowledge":[64],"obtained":[65],"from":[66,159],"web":[67,79],"space.":[68],"The":[69,101],"extracted":[71,158],"in":[72,116,120],"s-room":[74],"then":[76],"published":[77],"contents.":[80],"We":[81,133],"defined":[82],"set":[84],"event":[86],"descriptors":[87,102],"middle":[90],"language":[91,99],"between":[92,146],"data":[95,131],"stream":[96],"natural":[98],"description.":[100],"selected":[104],"two-way":[107],"method:":[108],"1)":[109],"top-down":[111],"approach":[112,125],"based":[113,126],"on":[114,127],"definitions":[115],"NL-dictionaries":[117],"laws":[119],"physics,":[121],"2)":[122],"bottom-up":[124],"manually":[128],"tagged":[129],"streams.":[132,163],"also":[134],"that":[139],"enables":[140],"us":[141],"arrange":[143],"relationship":[145],"NL":[147],"phrase":[148],"expressions":[149],"human":[151],"activities":[152],"multiple":[154],"automatically":[157],"signal":[162]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1979492644","counts_by_year":[{"year":2013,"cited_by_count":2}],"updated_date":"2025-01-18T23:09:17.445696","created_date":"2016-06-24"}