{"id":"https://openalex.org/W3042126369","doi":"https://doi.org/10.1142/s2424922x20500047","title":"Bayesian Kernel Regression for Noisy Inputs Based on Nadaraya\u2013Watson Estimator Constructed from Noiseless Training Data","display_name":"Bayesian Kernel Regression for Noisy Inputs Based on Nadaraya\u2013Watson Estimator Constructed from Noiseless Training Data","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3042126369","doi":"https://doi.org/10.1142/s2424922x20500047","mag":"3042126369"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1142/s2424922x20500047","pdf_url":null,"source":{"id":"https://openalex.org/S4210189353","display_name":"Advances in Data Science and Adaptive Analysis","issn_l":"2424-922X","issn":["2424-922X","2424-9238"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1142/s2424922x20500047","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022143777","display_name":"Ryo Hanafusa","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ryo Hanafusa","raw_affiliation_strings":["Graduate School of Science and Technology, Kwansei Gakuin University, 2\u20131, Gakuen, Sanda\u2013shi, Hyogo 669 1337, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Science and Technology, Kwansei Gakuin University, 2\u20131, Gakuen, Sanda\u2013shi, Hyogo 669 1337, Japan","institution_ids":["https://openalex.org/I206011266"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113946036","display_name":"Takeshi Okadome","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takeshi Okadome","raw_affiliation_strings":["Graduate School of Science and Technology, Kwansei Gakuin University, 2\u20131, Gakuen, Sanda\u2013shi, Hyogo 669 1337, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Science and Technology, Kwansei Gakuin University, 2\u20131, Gakuen, Sanda\u2013shi, Hyogo 669 1337, Japan","institution_ids":["https://openalex.org/I206011266"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.236,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.562825,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":"12","issue":"01","first_page":"2050004","last_page":"2050004"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.7178218},{"id":"https://openalex.org/keywords/kernel-regression","display_name":"Kernel regression","score":0.61789435},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4277947}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.7178218},{"id":"https://openalex.org/C200695384","wikidata":"https://www.wikidata.org/wiki/Q1739319","display_name":"Kernel regression","level":3,"score":0.61789435},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.5678493},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.56702185},{"id":"https://openalex.org/C74127309","wikidata":"https://www.wikidata.org/wiki/Q3455886","display_name":"Nonparametric regression","level":3,"score":0.54895306},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.49271587},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4571062},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4277947},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41830888},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3959758},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37016937},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.36906123},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11126226},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1142/s2424922x20500047","pdf_url":null,"source":{"id":"https://openalex.org/S4210189353","display_name":"Advances in Data Science and Adaptive Analysis","issn_l":"2424-922X","issn":["2424-922X","2424-9238"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1142/s2424922x20500047","pdf_url":null,"source":{"id":"https://openalex.org/S4210189353","display_name":"Advances in Data Science and Adaptive Analysis","issn_l":"2424-922X","issn":["2424-922X","2424-9238"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1512882103","https://openalex.org/W1883211128","https://openalex.org/W194397132","https://openalex.org/W1971713783","https://openalex.org/W1979463248","https://openalex.org/W1996158735","https://openalex.org/W2012177475","https://openalex.org/W2019260307","https://openalex.org/W2021708309","https://openalex.org/W2035750167","https://openalex.org/W2042410977","https://openalex.org/W2099210013","https://openalex.org/W2105813220","https://openalex.org/W2119946136","https://openalex.org/W2135260728","https://openalex.org/W2140856955","https://openalex.org/W2146596719","https://openalex.org/W2164406114","https://openalex.org/W2600687292","https://openalex.org/W2797602122","https://openalex.org/W2950182411","https://openalex.org/W3143949042","https://openalex.org/W4205687621","https://openalex.org/W4212863985","https://openalex.org/W4241998182","https://openalex.org/W4243863038","https://openalex.org/W4302338619","https://openalex.org/W4388297464"],"related_works":["https://openalex.org/W4249112797","https://openalex.org/W3124373708","https://openalex.org/W3121786440","https://openalex.org/W2697282650","https://openalex.org/W2213164457","https://openalex.org/W2151924912","https://openalex.org/W2057032881","https://openalex.org/W1985258161","https://openalex.org/W1979200279","https://openalex.org/W1977532368"],"abstract_inverted_index":{"In":[0,28,79],"regression":[1,26,43,51,143],"for":[2,39,53,68,87,145],"noisy":[3,12,54,104,114,146],"inputs,":[4],"noise":[5,90,98],"is":[6,22,33,73,85],"typically":[7],"removed":[8],"from":[9,75,101,117],"a":[10,50,65,81,102,123],"given":[11],"input":[13,21,115],"if":[14],"possible,":[15],"and":[16,129,148],"then":[17],"the":[18,25,57,89,97,107,110,118,135,139,142,149,156],"resulting":[19],"noise-free":[20,62,111],"provided":[23],"to":[24,95],"function.":[27],"some":[29],"cases,":[30],"however,":[31],"there":[32],"no":[34],"available":[35],"time":[36],"or":[37],"method":[38,44,137],"removing":[40],"noise.":[41],"The":[42],"proposed":[45,136],"in":[46],"this":[47],"paper":[48],"determines":[49],"function":[52,144],"inputs":[55,147],"using":[56,106,127],"estimated":[58,116],"posterior":[59],"of":[60,109,113,141,155,163],"their":[61],"constituents":[63],"with":[64,161],"nonparametric":[66],"estimator":[67],"noiseless":[69,76],"explanatory":[70],"values,":[71],"which":[72],"constructed":[74],"training":[77,119],"data.":[78],"addition,":[80],"probabilistic":[82],"generative":[83],"model":[84],"presented":[86],"estimating":[88],"distribution.":[91],"This":[92],"enables":[93],"us":[94],"determine":[96],"distribution":[99,108],"parametrically":[100],"single":[103],"input,":[105],"constituent":[112],"data":[120,131],"set":[121],"as":[122],"prior.":[124],"Experiments":[125],"conducted":[126],"artificial":[128],"real":[130],"sets":[132],"show":[133],"that":[134],"suppresses":[138],"overfitting":[140],"root":[150],"mean":[151],"squared":[152],"errors":[153],"(RMSEs)":[154],"predictions":[157],"are":[158],"smaller":[159],"compared":[160],"those":[162],"an":[164],"existing":[165],"method.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3042126369","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-22T01:07:10.539949","created_date":"2020-07-16"}