{"id":"https://openalex.org/W2048513844","doi":"https://doi.org/10.1142/s1793536911000805","title":"SPARSE TEMPLATE-BASED VARIATIONAL IMAGE SEGMENTATION","display_name":"SPARSE TEMPLATE-BASED VARIATIONAL IMAGE SEGMENTATION","publication_year":2011,"publication_date":"2011-04-01","ids":{"openalex":"https://openalex.org/W2048513844","doi":"https://doi.org/10.1142/s1793536911000805","mag":"2048513844"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s1793536911000805","pdf_url":null,"source":{"id":"https://openalex.org/S16439242","display_name":"Advances in Adaptive Data Analysis","issn_l":"1793-7175","issn":["1793-7175","1793-5369"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072881910","display_name":"Dirk Breitenreicher","orcid":null},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"education","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"DIRK BREITENREICHER","raw_affiliation_strings":["Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027503123","display_name":"Jan Lellmann","orcid":"https://orcid.org/0000-0002-5243-0331"},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"education","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"JAN LELLMANN","raw_affiliation_strings":["Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088815590","display_name":"Christoph Schn\u00f6rr","orcid":"https://orcid.org/0000-0002-8999-2338"},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"education","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"CHRISTOPH SCHN\u00d6RR","raw_affiliation_strings":["Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Image and Pattern Analysis Group, Heidelberg Collaboratory of Image Processing, Department of Mathematics and Computer Science, University of Heidelberg, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.457359,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":72},"biblio":{"volume":"03","issue":"01n02","first_page":"149","last_page":"166"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9547,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.61016244},{"id":"https://openalex.org/keywords/template","display_name":"Template","score":0.46028844}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.61016244},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.56427366},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54062074},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5254447},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.4937404},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.4828511},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.47758722},{"id":"https://openalex.org/C82714645","wikidata":"https://www.wikidata.org/wiki/Q438331","display_name":"Template","level":2,"score":0.46028844},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.42435607},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42204514},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3933716},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38059056},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3709448},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s1793536911000805","pdf_url":null,"source":{"id":"https://openalex.org/S16439242","display_name":"Advances in Adaptive Data Analysis","issn_l":"1793-7175","issn":["1793-7175","1793-5369"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.43,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1506879382","https://openalex.org/W1965865731","https://openalex.org/W1983700440","https://openalex.org/W2020390700","https://openalex.org/W2038495454","https://openalex.org/W2078204800","https://openalex.org/W2081425135","https://openalex.org/W2081985785","https://openalex.org/W2096426929","https://openalex.org/W2097324202","https://openalex.org/W2099321050","https://openalex.org/W2111522305","https://openalex.org/W2114487471","https://openalex.org/W2120938053","https://openalex.org/W2129390138","https://openalex.org/W2140843581","https://openalex.org/W2154791445","https://openalex.org/W2155343350","https://openalex.org/W2160547390","https://openalex.org/W2167732364","https://openalex.org/W2186531643","https://openalex.org/W2544610656","https://openalex.org/W2726656315","https://openalex.org/W2797302609","https://openalex.org/W3124114587","https://openalex.org/W4249667877","https://openalex.org/W53515490"],"related_works":["https://openalex.org/W4390787808","https://openalex.org/W4250583430","https://openalex.org/W4236081792","https://openalex.org/W4236036386","https://openalex.org/W4234406076","https://openalex.org/W2360893094","https://openalex.org/W2121300814","https://openalex.org/W2010731026","https://openalex.org/W1886613375","https://openalex.org/W1522196789"],"abstract_inverted_index":{"We":[0,78],"introduce":[1],"a":[2,22,33],"variational":[3,44,76],"approach":[4,45,54,81],"to":[5,42,49,71],"image":[6,13],"segmentation":[7],"based":[8],"on":[9],"sparse":[10],"coverings":[11],"of":[12,64,75],"domains":[14],"by":[15,28,82,94],"shape":[16,63],"templates.":[17],"The":[18],"objective":[19],"function":[20],"combines":[21],"data":[23],"term":[24],"that":[25,46],"achieves":[26],"robustness":[27],"tolerating":[29],"overlapping":[30],"templates":[31],"with":[32],"regularizer":[34],"enforcing":[35],"sparsity.":[36],"A":[37],"suitable":[38],"convex":[39,51],"relaxation":[40],"leads":[41],"the":[43,62],"is":[47],"amenable":[48],"large-scale":[50],"programming.":[52],"Our":[53],"takes":[55],"implicitly":[56],"into":[57],"account":[58],"prior":[59,88],"knowledge":[60,89],"about":[61],"objects":[65],"and":[66,85],"their":[67],"parts,":[68],"without":[69],"resorting":[70],"combinatorially":[72],"difficult":[73],"problems":[74],"inference.":[77],"illustrate":[79],"our":[80],"numerical":[83],"examples":[84],"indicate":[86],"how":[87],"acquisition":[90],"may":[91],"be":[92],"achieved":[93],"learning":[95],"from":[96],"examples.":[97]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2048513844","counts_by_year":[{"year":2016,"cited_by_count":1}],"updated_date":"2025-01-19T13:36:23.820341","created_date":"2016-06-24"}