{"id":"https://openalex.org/W2116305536","doi":"https://doi.org/10.1142/s0219649214500361","title":"An Approach for Summarizing Hindi Text Through a Hybrid Fuzzy Neural Network Algorithm","display_name":"An Approach for Summarizing Hindi Text Through a Hybrid Fuzzy Neural Network Algorithm","publication_year":2014,"publication_date":"2014-12-01","ids":{"openalex":"https://openalex.org/W2116305536","doi":"https://doi.org/10.1142/s0219649214500361","mag":"2116305536"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219649214500361","pdf_url":null,"source":{"id":"https://openalex.org/S30163770","display_name":"Journal of Information & Knowledge Management","issn_l":"0219-6492","issn":["0219-6492","1793-6926"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043060367","display_name":"J. Anitha","orcid":null},"institutions":[{"id":"https://openalex.org/I4210103544","display_name":"DKTE Society's Textile and Engineering Institute","ror":"https://ror.org/014bdwq31","country_code":"IN","type":"education","lineage":["https://openalex.org/I4210103544"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"J. Anitha","raw_affiliation_strings":["Department of CSE, Dadi Institute of Engineering & Technology, Anakapalle, Vishakapatnam, India"],"affiliations":[{"raw_affiliation_string":"Department of CSE, Dadi Institute of Engineering & Technology, Anakapalle, Vishakapatnam, India","institution_ids":["https://openalex.org/I4210103544"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038960546","display_name":"P. V. G. D. Prasad Reddy","orcid":null},"institutions":[{"id":"https://openalex.org/I100887729","display_name":"Andhra University","ror":"https://ror.org/049skhf47","country_code":"IN","type":"education","lineage":["https://openalex.org/I100887729"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"P. V. G. D. Prasad Reddy","raw_affiliation_strings":["Department of CS & SE, Andhra University, Visakhapatnam, Andhra Pradesh, India"],"affiliations":[{"raw_affiliation_string":"Department of CS & SE, Andhra University, Visakhapatnam, Andhra Pradesh, India","institution_ids":["https://openalex.org/I100887729"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112583132","display_name":"M. S. Prasad Babu","orcid":null},"institutions":[{"id":"https://openalex.org/I100887729","display_name":"Andhra University","ror":"https://ror.org/049skhf47","country_code":"IN","type":"education","lineage":["https://openalex.org/I100887729"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"M. S. Prasad Babu","raw_affiliation_strings":["Department of CS & SE, Andhra University, Visakhapatnam, Andhra Pradesh, India"],"affiliations":[{"raw_affiliation_string":"Department of CS & SE, Andhra University, Visakhapatnam, Andhra Pradesh, India","institution_ids":["https://openalex.org/I100887729"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.992,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.826797,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"13","issue":"04","first_page":"1450036","last_page":"1450036"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hybrid-neural-network","display_name":"Hybrid neural network","score":0.4406545}],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.8521725},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8111509},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.638916},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5987201},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.55250996},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.51082015},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.4688258},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4478194},{"id":"https://openalex.org/C2779990667","wikidata":"https://www.wikidata.org/wiki/Q5953266","display_name":"Hybrid neural network","level":3,"score":0.4406545},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.4224481},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39133802},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3201314}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219649214500361","pdf_url":null,"source":{"id":"https://openalex.org/S30163770","display_name":"Journal of Information & Knowledge Management","issn_l":"0219-6492","issn":["0219-6492","1793-6926"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1534635956","https://openalex.org/W1577877742","https://openalex.org/W1965316693","https://openalex.org/W1967082914","https://openalex.org/W1969279572","https://openalex.org/W1978799756","https://openalex.org/W2007407316","https://openalex.org/W2012179416","https://openalex.org/W201392675","https://openalex.org/W2042072767","https://openalex.org/W2046059962","https://openalex.org/W2058232337","https://openalex.org/W2065524717","https://openalex.org/W2066761753","https://openalex.org/W2094515246","https://openalex.org/W2097565167","https://openalex.org/W2103929335","https://openalex.org/W2111862313","https://openalex.org/W2125281549","https://openalex.org/W2148374900","https://openalex.org/W2149795409","https://openalex.org/W2188303294","https://openalex.org/W2494048233","https://openalex.org/W4210834152"],"related_works":["https://openalex.org/W3174620462","https://openalex.org/W2961085424","https://openalex.org/W2623427976","https://openalex.org/W2563096758","https://openalex.org/W2549006548","https://openalex.org/W2347941600","https://openalex.org/W2330186386","https://openalex.org/W2035950535","https://openalex.org/W2001652754","https://openalex.org/W1629725936"],"abstract_inverted_index":{"Text":[0],"summarization":[1,25,36],"is":[2,40,50,79,98],"one":[3],"of":[4,44,124,134,181,198],"the":[5,10,18,82,89,92,113,122,125,135,142,154,161,165,168,196,199],"most":[6],"discussed":[7],"topic":[8],"in":[9,12,37,85,91,157],"field":[11],"information":[13],"exchange":[14],"and":[15,59,67,103,119,177],"retrieval.":[16],"Recently,":[17],"need":[19],"for":[20,34,72,106,183],"local":[21],"language":[22,39],"based":[23,111,140],"text":[24,35],"methods":[26],"are":[27,70,129,151],"increasing.":[28],"In":[29],"this":[30],"paper,":[31],"a":[32],"method":[33,102],"Hindi":[38],"plotted":[41],"with":[42,81],"help":[43],"extraction":[45],"methods.":[46],"The":[47,64,76,187],"proposed":[48,136,155,169,200],"approach":[49,137,156,170],"uses":[51],"three":[52],"major":[53],"algorithms,":[54],"fuzzy":[55,65,101,117],"classifier,":[56],"neural":[57,68,83,93,104,120],"network":[58,69,105],"global":[60],"search":[61],"optimization":[62],"(GSO).":[63],"classifier":[66,118],"used":[71,80],"generating":[73],"sentence":[74],"score.":[75],"GSO":[77],"algorithm":[78],"network,":[84,121],"order":[86,158],"to":[87,159,164,194],"optimize":[88],"weights":[90],"network.":[94],"A":[95],"hybrid":[96,114],"score":[97,115],"generated":[99],"from":[100,116],"each":[107],"input":[108,127],"sentences.":[109],"Finally,":[110],"on":[112,141,148,153],"summary":[123],"given":[126],"records":[128],"generated.":[130],"An":[131],"experimental":[132,149,166],"analysis":[133,150,189],"will":[138],"subjected":[139],"evaluation":[143],"parameters":[144],"precision,":[145],"recall.":[146],"Later":[147],"conducted":[152],"evaluate":[160],"performance.":[162],"According":[163],"analysis,":[167],"achieved":[171],"an":[172],"average":[173,178],"precision":[174],"rate":[175,180,185],"0.90":[176],"recall":[179],"0.88":[182],"compression":[184],"20%.":[186],"comparative":[188],"also":[190],"provided":[191],"reasonable":[192],"results":[193],"prove":[195],"efficiency":[197],"approach.":[201]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2116305536","counts_by_year":[{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2025-01-20T17:06:23.448899","created_date":"2016-06-24"}