{"id":"https://openalex.org/W2084251196","doi":"https://doi.org/10.1142/s0219467814500144","title":"A Learning-Based Framework for Supervised and Unsupervised Image Segmentation Evaluation","display_name":"A Learning-Based Framework for Supervised and Unsupervised Image Segmentation Evaluation","publication_year":2014,"publication_date":"2014-07-01","ids":{"openalex":"https://openalex.org/W2084251196","doi":"https://doi.org/10.1142/s0219467814500144","mag":"2084251196"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219467814500144","pdf_url":null,"source":{"id":"https://openalex.org/S60080701","display_name":"International Journal of Image and Graphics","issn_l":"0219-4678","issn":["0219-4678","1793-6756"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100627435","display_name":"Jian Lin","orcid":"https://orcid.org/0000-0003-3379-9173"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian Lin","raw_affiliation_strings":["[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]"],"affiliations":[{"raw_affiliation_string":"[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026744328","display_name":"Bo Peng","orcid":"https://orcid.org/0000-0002-8539-180X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Peng","raw_affiliation_strings":["[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]"],"affiliations":[{"raw_affiliation_string":"[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070559820","display_name":"Tianrui Li","orcid":"https://orcid.org/0000-0001-7780-104X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tianrui Li","raw_affiliation_strings":["[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]"],"affiliations":[{"raw_affiliation_string":"[School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China]","institution_ids":["https://openalex.org/I4800084"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.726,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.762299,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":"14","issue":"03","first_page":"1450014","last_page":"1450014"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.72079474},{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.62720764},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.52998614}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.8523375},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78715074},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74185956},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.72079474},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.6682662},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.62720764},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.6117252},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54777},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.52998614},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4967118},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44743577},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44219726},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37683675},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219467814500144","pdf_url":null,"source":{"id":"https://openalex.org/S60080701","display_name":"International Journal of Image and Graphics","issn_l":"0219-4678","issn":["0219-4678","1793-6756"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W16865847","https://openalex.org/W1978732781","https://openalex.org/W1998076850","https://openalex.org/W2008043556","https://openalex.org/W2010948152","https://openalex.org/W2037563221","https://openalex.org/W2059208704","https://openalex.org/W2071469153","https://openalex.org/W2079914646","https://openalex.org/W2083542343","https://openalex.org/W2096127742","https://openalex.org/W2097477220","https://openalex.org/W2098809595","https://openalex.org/W2104125540","https://openalex.org/W2115593863","https://openalex.org/W2121927366","https://openalex.org/W2125378844","https://openalex.org/W2138927287","https://openalex.org/W2141729166","https://openalex.org/W2141814394","https://openalex.org/W2144548729","https://openalex.org/W349770100","https://openalex.org/W4244952642"],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2551987074","https://openalex.org/W2386644571","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857","https://openalex.org/W1999008862"],"abstract_inverted_index":{"Image":[0],"segmentation":[1,25,48,55,76,85,90,101],"is":[2,12,20],"a":[3,114],"fundamental":[4],"task":[5],"in":[6,27,73],"automatic":[7],"image":[8,100],"analysis.":[9],"However,":[10],"there":[11],"still":[13],"no":[14],"generally":[15],"accepted":[16],"effectiveness":[17],"measure":[18],"which":[19,38,78],"suitable":[21],"for":[22],"evaluating":[23],"the":[24,58,105,109,118],"quality":[26],"every":[28],"application.":[29],"In":[30,93],"this":[31,45,71],"paper,":[32],"we":[33,95],"propose":[34],"an":[35],"evaluation":[36,49,98,106],"framework":[37,72],"benefits":[39],"from":[40],"multiple":[41],"stand-alone":[42,119],"measures.":[43,110],"To":[44],"end,":[46],"different":[47,82],"measures":[50],"are":[51,60],"chosen":[52],"to":[53,103],"evaluate":[54],"separately,":[56],"and":[57,69,88],"results":[59,107,112],"effectively":[61],"combined":[62],"using":[63],"machine":[64],"learning":[65],"methods.":[66,120],"We":[67],"train":[68],"implement":[70],"our":[74],"brand-new":[75],"dataset":[77],"contains":[79],"images":[80],"of":[81,99,108],"contents":[83],"with":[84],"ground":[86],"truth":[87],"Weizmann":[89],"database":[91],"(WSD).":[92],"addition,":[94],"provide":[96],"human":[97],"pairs":[102],"benchmark":[104],"Experimental":[111],"show":[113],"better":[115],"performance":[116],"than":[117]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2084251196","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2024-12-10T07:58:22.028872","created_date":"2016-06-24"}