{"id":"https://openalex.org/W2999428528","doi":"https://doi.org/10.1142/s0218488520500026","title":"A New Efficient Algorithm Based on Multi-Classifiers Model for Classification","display_name":"A New Efficient Algorithm Based on Multi-Classifiers Model for Classification","publication_year":2020,"publication_date":"2020-01-13","ids":{"openalex":"https://openalex.org/W2999428528","doi":"https://doi.org/10.1142/s0218488520500026","mag":"2999428528"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0218488520500026","pdf_url":null,"source":{"id":"https://openalex.org/S69518169","display_name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","issn_l":"0218-4885","issn":["0218-4885","1793-6411"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017426295","display_name":"Yifeng Zheng","orcid":"https://orcid.org/0000-0001-9884-2481"},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I9356336"]},{"id":"https://openalex.org/I204553293","display_name":"China University of Petroleum, Beijing","ror":"https://ror.org/041qf4r12","country_code":"CN","type":"funder","lineage":["https://openalex.org/I204553293"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yifeng Zheng","raw_affiliation_strings":["College of Information Science and Engineering, China University of Petroleum, Key Lab of Data Mining for Petroleum Data, China University of Petroleum, Beijing, 102249, China","School of Computer Sciences, Minnan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou, 363000, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Sciences, Minnan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou, 363000, China","institution_ids":["https://openalex.org/I9356336"]},{"raw_affiliation_string":"College of Information Science and Engineering, China University of Petroleum, Key Lab of Data Mining for Petroleum Data, China University of Petroleum, Beijing, 102249, China","institution_ids":["https://openalex.org/I204553293"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102844195","display_name":"Guohe Li","orcid":"https://orcid.org/0009-0008-9982-4478"},"institutions":[{"id":"https://openalex.org/I204553293","display_name":"China University of Petroleum, Beijing","ror":"https://ror.org/041qf4r12","country_code":"CN","type":"funder","lineage":["https://openalex.org/I204553293"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guohe Li","raw_affiliation_strings":["College of Information Science and Engineering, China University of Petroleum, Key Lab of Data Mining for Petroleum Data, China University of Petroleum, Beijing, 102249, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, China University of Petroleum, Key Lab of Data Mining for Petroleum Data, China University of Petroleum, Beijing, 102249, China","institution_ids":["https://openalex.org/I204553293"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100385513","display_name":"Wenjie Zhang","orcid":"https://orcid.org/0000-0002-7470-3011"},"institutions":[{"id":"https://openalex.org/I9356336","display_name":"Zhangzhou Normal University","ror":"https://ror.org/02vj1vm13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I9356336"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenjie Zhang","raw_affiliation_strings":["School of Computer Sciences, Minnan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou, 363000, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Sciences, Minnan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou, 363000, China","institution_ids":["https://openalex.org/I9356336"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.59,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.445476,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":80},"biblio":{"volume":"28","issue":"01","first_page":"25","last_page":"46"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/one-class-classification","display_name":"One-class classification","score":0.54147583},{"id":"https://openalex.org/keywords/statistical-classification","display_name":"Statistical classification","score":0.49587068},{"id":"https://openalex.org/keywords/classification-rule","display_name":"Classification rule","score":0.4544925},{"id":"https://openalex.org/keywords/data-classification","display_name":"Data classification","score":0.4257878}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64900744},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.63596064},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5847372},{"id":"https://openalex.org/C34872919","wikidata":"https://www.wikidata.org/wiki/Q7092302","display_name":"One-class classification","level":3,"score":0.54147583},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5341669},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49817896},{"id":"https://openalex.org/C110083411","wikidata":"https://www.wikidata.org/wiki/Q1744628","display_name":"Statistical classification","level":2,"score":0.49587068},{"id":"https://openalex.org/C104317236","wikidata":"https://www.wikidata.org/wiki/Q4330126","display_name":"Classification rule","level":2,"score":0.4544925},{"id":"https://openalex.org/C2780724565","wikidata":"https://www.wikidata.org/wiki/Q5227256","display_name":"Data classification","level":2,"score":0.4257878},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40569133}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0218488520500026","pdf_url":null,"source":{"id":"https://openalex.org/S69518169","display_name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","issn_l":"0218-4885","issn":["0218-4885","1793-6411"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321878","funder_display_name":"Natural Science Foundation of Fujian Province","award_id":"2018J01545"}],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1517113043","https://openalex.org/W1557997065","https://openalex.org/W1973445272","https://openalex.org/W2010712778","https://openalex.org/W2014995154","https://openalex.org/W2021137987","https://openalex.org/W2030184507","https://openalex.org/W2096945460","https://openalex.org/W2100128988","https://openalex.org/W2110086824","https://openalex.org/W2112915739","https://openalex.org/W2114834796","https://openalex.org/W2118978333","https://openalex.org/W2124685890","https://openalex.org/W2125814100","https://openalex.org/W2140460921","https://openalex.org/W2148143831","https://openalex.org/W2150887734","https://openalex.org/W2182722412","https://openalex.org/W2305347498","https://openalex.org/W2468539463","https://openalex.org/W2472223596","https://openalex.org/W2504264036","https://openalex.org/W2585528949","https://openalex.org/W2585770658","https://openalex.org/W2738592469","https://openalex.org/W2768473193"],"related_works":["https://openalex.org/W4386053843","https://openalex.org/W4365421262","https://openalex.org/W3200179079","https://openalex.org/W3158004940","https://openalex.org/W2972035100","https://openalex.org/W2742991909","https://openalex.org/W2563096758","https://openalex.org/W2556319748","https://openalex.org/W2167582322","https://openalex.org/W2147204908"],"abstract_inverted_index":{"Classification":[0],"is":[1,90],"one":[2,110],"of":[3,18,28,54,63,75],"the":[4,26,40,61,72,81,102,124],"most":[5],"important":[6],"problems":[7],"in":[8,87],"data":[9],"mining":[10],"and":[11,16,83,100],"machine":[12],"learning.":[13],"The":[14,65,112],"quality":[15],"quantity":[17,89],"classification":[19,42,56,77,121,126],"rules":[20,108,133],"are":[21,69],"two":[22,55,97],"factors":[23],"to":[24,38,105],"influence":[25],"accuracy":[27,122],"classification.":[29,146],"In":[30],"this":[31],"paper,":[32],"we":[33],"propose":[34],"a":[35,76],"new":[36],"algorithm":[37],"enhance":[39],"final":[41],"accuracy,":[43],"called":[44],"CMCM":[45,117,128],"(Classification":[46],"based":[47],"on":[48,60],"Multiple":[49],"Classifier":[50],"Models),":[51],"which":[52],"consists":[53],"models.":[57],"Model1":[58],"centers":[59],"improvement":[62],"quality.":[64],"optimal":[66],"attribute":[67],"values":[68],"obtained":[70],"as":[71],"first":[73],"item":[74],"rule":[78],"from":[79],"both":[80],"items":[82],"their":[84],"complements.":[85],"While":[86],"Model2,":[88],"taken":[91],"into":[92],"consideration,":[93],"so":[94],"it":[95,138],"constructs":[96],"candidate":[98],"sets":[99],"uses":[101],"one-versus-many":[103],"strategy":[104],"generate":[106],"several":[107],"at":[109],"time.":[111],"experiment":[113],"results":[114],"demonstrate":[115],"that":[116],"can":[118,129,139],"achieve":[119],"higher":[120],"than":[123],"proposed":[125],"approaches.":[127],"extract":[130],"sufficient":[131,142],"high-quality":[132],"for":[134,145],"imbalanced":[135],"data.":[136],"Meanwhile,":[137],"also":[140],"obtain":[141],"latent":[143],"information":[144]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2999428528","counts_by_year":[{"year":2023,"cited_by_count":5}],"updated_date":"2025-04-29T07:39:47.227511","created_date":"2020-01-23"}