{"id":"https://openalex.org/W4392918298","doi":"https://doi.org/10.1142/s021821302450009x","title":"Efficient Online Big Data Stream Clustering Using Dual Interactive Wasserstein Generative Adversarial Network","display_name":"Efficient Online Big Data Stream Clustering Using Dual Interactive Wasserstein Generative Adversarial Network","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4392918298","doi":"https://doi.org/10.1142/s021821302450009x"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s021821302450009x","pdf_url":null,"source":{"id":"https://openalex.org/S178780388","display_name":"International Journal of Artificial Intelligence Tools","issn_l":"0218-2130","issn":["0218-2130","1793-6349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073793208","display_name":"S. Matheswaran","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Suresh Matheswaran","raw_affiliation_strings":["Department of Computer Science and Engineering, Selvam College of Technology Namakkal 637 003, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Selvam College of Technology Namakkal 637 003, Tamil Nadu, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080101527","display_name":"Nandhagopal Nachimuthu","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nandhagopal Nachimuthu","raw_affiliation_strings":["Department of Biomedical Engineering, Shreenivaisa Engineering College, Bommidi, Dharmapuri 635301, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Biomedical Engineering, Shreenivaisa Engineering College, Bommidi, Dharmapuri 635301, Tamil Nadu, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052308694","display_name":"G. Prakash","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"G. Prakash","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Excel Engineering College Komarapalyam 637303, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Excel Engineering College Komarapalyam 637303, Tamil Nadu, India","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":"33","issue":"05","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-adversarial-network","display_name":"Generative adversarial network","score":0.68359053}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7006546},{"id":"https://openalex.org/C2780980858","wikidata":"https://www.wikidata.org/wiki/Q110022","display_name":"Dual (grammatical number)","level":2,"score":0.69174755},{"id":"https://openalex.org/C2988773926","wikidata":"https://www.wikidata.org/wiki/Q25104379","display_name":"Generative adversarial network","level":3,"score":0.68359053},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.66955054},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.63401103},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.6281711},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.60658467},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46171355},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.29809117},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.25987518},{"id":"https://openalex.org/C124952713","wikidata":"https://www.wikidata.org/wiki/Q8242","display_name":"Literature","level":1,"score":0.0},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s021821302450009x","pdf_url":null,"source":{"id":"https://openalex.org/S178780388","display_name":"International Journal of Artificial Intelligence Tools","issn_l":"0218-2130","issn":["0218-2130","1793-6349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W2343620495","https://openalex.org/W2792228965","https://openalex.org/W2898790230","https://openalex.org/W2913024106","https://openalex.org/W2914340986","https://openalex.org/W2920270798","https://openalex.org/W2950766322","https://openalex.org/W2993308207","https://openalex.org/W3000166127","https://openalex.org/W3012532133","https://openalex.org/W3018761215","https://openalex.org/W3020253148","https://openalex.org/W3026777367","https://openalex.org/W3039222472","https://openalex.org/W3045793624","https://openalex.org/W3048003244","https://openalex.org/W3049557313","https://openalex.org/W3083725873","https://openalex.org/W3093426450","https://openalex.org/W3097761912","https://openalex.org/W3098222616","https://openalex.org/W3104083384","https://openalex.org/W3134762862","https://openalex.org/W3194913334","https://openalex.org/W4213078046","https://openalex.org/W4214583441","https://openalex.org/W4220999462","https://openalex.org/W4234488063","https://openalex.org/W4243830291","https://openalex.org/W4365509914","https://openalex.org/W4384133486"],"related_works":["https://openalex.org/W4385421777","https://openalex.org/W4377980832","https://openalex.org/W4297411772","https://openalex.org/W4235873501","https://openalex.org/W3005996785","https://openalex.org/W2996316059","https://openalex.org/W2897769091","https://openalex.org/W2888032422","https://openalex.org/W2845413374","https://openalex.org/W2502115930"],"abstract_inverted_index":{"Numerous":[0],"real-world":[1],"applications,":[2],"such":[3,230],"as":[4,179,231],"online":[5,48,55,82,147,159,293],"gaming,":[6],"video":[7],"streaming,":[8],"and":[9,35,161,221,241,252,258,286],"internet":[10],"calls":[11],"are":[12,32,45,90,119,164],"streamed":[13],"enormous":[14],"volumes":[15],"of":[16,77,102,146,158,169],"data.":[17],"So":[18],"it":[19],"is":[20,68,153,177,198,208,217,224],"important":[21],"to":[22,121,130],"quickly":[23],"process":[24],"data":[25,39,49,57,80,89,105,118,133,138,151,163,182,271,283,294],"streams":[26,284],"in":[27,37,70,166,184,219],"real-time.":[28],"Data":[29],"clustering":[30,59,160,206,267],"methods":[31],"historically":[33],"effective":[34],"efficient":[36,54,132],"extracting":[38],"from":[40,92,210],"large":[41],"datasets.":[42],"Typically,":[43],"they":[44],"ineffective":[46],"for":[47,269,279,292],"stream":[50,58,134,152,272,295],"clustering.":[51,85,135,148],"Therefore,":[52],"an":[53],"big":[56],"using":[60,109],"dual":[61,123],"interactive":[62,124],"Wasserstein":[63,125],"generative":[64,126],"adversarial":[65,127],"network":[66,128],"(OBDSC-DI-WGAN)":[67],"proposed":[69,74,215,245],"this":[71],"paper.":[72],"The":[73,175,192,214,244],"method":[75,246],"consists":[76],"three":[78],"phases:":[79],"initialization,":[81,115],"clustering,":[83],"offline":[84,170,190],"Initially,":[86],"the":[87,100,103,114,116,122,137,140,144,150,156,162,167,189,205],"input":[88,104],"taken":[91],"Forest":[93],"Cover":[94],"Type":[95],"dataset.":[96],"During":[97],"initialization":[98],"phase,":[99],"dimensions":[101],"can":[106],"be":[107],"reduced":[108],"kernel":[110],"co-relation":[111],"approach.":[112],"After":[113],"dimension-reduced":[117],"fed":[120],"(DI-WGAN)":[129],"accomplish":[131],"Then":[136],"enter":[139],"selected":[141],"grid":[142,176],"during":[143,188],"stage":[145,157,168],"Afterward,":[149],"activated":[154,165,218],"through":[155],"depending":[171],"upon":[172],"user":[173],"request.":[174],"regarded":[178],"a":[180],"virtual":[181],"point":[183],"its":[185,222],"geometric":[186],"center":[187],"phase.":[191],"density":[193,212],"radius":[194],"along":[195],"cluster":[196],"centers":[197],"determined":[199],"under":[200,226],"Billiards-inspired":[201],"optimization":[202],"algorithm.":[203],"Finally,":[204],"outcome":[207],"derived":[209],"optimum":[211],"radius.":[213],"technique":[216],"MATLAB,":[220],"efficiency":[223],"analyzed":[225],"some":[227],"performance":[228],"metrics,":[229],"accuracy,":[232],"dice":[233],"coefficient,":[234],"purity,":[235],"sensitivity,":[236],"specificity,":[237],"precision,":[238],"processing":[239],"time":[240],"jacquard":[242],"coefficient.":[243],"provides":[247],"better":[248,254],"accuracy":[249],"27.5%,":[250],"10.32%":[251],"16.65%,":[253],"precision":[255],"30.93%,":[256],"11.14%":[257],"15.3%":[259],"compared":[260],"with":[261],"existing":[262],"methods,":[263],"like":[264],"fast":[265],"grid-based":[266],"approach":[268],"hybrid":[270],"(FGCH-CCFD-OBDSC),":[273],"optimized":[274],"deep":[275,289],"autoencoder":[276],"including":[277],"CNN":[278],"non-stationary":[280],"environments":[281],"surveillance":[282],"(DAE-CNN-OBDSC)":[285],"asynchronous":[287],"dual-pipeline":[288],"learning":[290],"framework":[291],"classification":[296],"(1D-CNN-OBDSC)":[297],"respectively.":[298]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392918298","counts_by_year":[],"updated_date":"2024-12-14T10:21:03.191737","created_date":"2024-03-19"}