{"id":"https://openalex.org/W4317631255","doi":"https://doi.org/10.1142/s0218126623502201","title":"WFLTree: A Spanning Tree Construction for Federated Learning in Wireless Networks","display_name":"WFLTree: A Spanning Tree Construction for Federated Learning in Wireless Networks","publication_year":2023,"publication_date":"2023-01-20","ids":{"openalex":"https://openalex.org/W4317631255","doi":"https://doi.org/10.1142/s0218126623502201"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0218126623502201","pdf_url":null,"source":{"id":"https://openalex.org/S167602672","display_name":"Journal of Circuits Systems and Computers","issn_l":"0218-1266","issn":["0218-1266","1793-6454"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100386630","display_name":"Shuo Li","orcid":"https://orcid.org/0000-0002-5184-3230"},"institutions":[{"id":"https://openalex.org/I88830068","display_name":"Shaanxi Normal University","ror":"https://ror.org/0170z8493","country_code":"CN","type":"funder","lineage":["https://openalex.org/I88830068"]},{"id":"https://openalex.org/I4210103745","display_name":"Changji University","ror":"https://ror.org/016j41127","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210103745"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuo Li","raw_affiliation_strings":["School of Mathematics and Data Sciences, Changji University, Changji, Xinjiang 831100, P. R. China","School of Mathematics and Statistics, Shaanxi Normal University, Xi\u2019an, Shaanxi 710062, P. R. China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Shaanxi Normal University, Xi\u2019an, Shaanxi 710062, P. R. China","institution_ids":["https://openalex.org/I88830068"]},{"raw_affiliation_string":"School of Mathematics and Data Sciences, Changji University, Changji, Xinjiang 831100, P. R. China","institution_ids":["https://openalex.org/I4210103745"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100870230","display_name":"Yanwei Zheng","orcid":null},"institutions":[{"id":"https://openalex.org/I80143920","display_name":"Shandong University of Science and Technology","ror":"https://ror.org/04gtjhw98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I80143920"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yanwei Zheng","raw_affiliation_strings":["School of Computer Science and Technology, Shandong University, Qingdao, Shandong 266237, P. R. China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Shandong University, Qingdao, Shandong 266237, P. R. China","institution_ids":["https://openalex.org/I80143920"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021204914","display_name":"Yifei Zou","orcid":"https://orcid.org/0000-0003-4579-5380"},"institutions":[{"id":"https://openalex.org/I80143920","display_name":"Shandong University of Science and Technology","ror":"https://ror.org/04gtjhw98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I80143920"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yifei Zou","raw_affiliation_strings":["School of Computer Science and Technology, Shandong University, Qingdao, Shandong 266237, P. R. China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Shandong University, Qingdao, Shandong 266237, P. R. China","institution_ids":["https://openalex.org/I80143920"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5100870230"],"corresponding_institution_ids":["https://openalex.org/I80143920"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":"32","issue":"13","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Cryptography and Data Security","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/online-machine-learning","display_name":"Online machine learning","score":0.47114936},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.4710051}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80302346},{"id":"https://openalex.org/C108037233","wikidata":"https://www.wikidata.org/wiki/Q11375","display_name":"Wireless network","level":3,"score":0.5973299},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.54751015},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.5217279},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50850284},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48452038},{"id":"https://openalex.org/C115903097","wikidata":"https://www.wikidata.org/wiki/Q7094097","display_name":"Online machine learning","level":3,"score":0.47114936},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.4710051},{"id":"https://openalex.org/C64331007","wikidata":"https://www.wikidata.org/wiki/Q831672","display_name":"Spanning tree","level":2,"score":0.4431662},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.43900785},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.39231205},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.3389204},{"id":"https://openalex.org/C77967617","wikidata":"https://www.wikidata.org/wiki/Q4677561","display_name":"Active learning (machine learning)","level":2,"score":0.30088618},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.09737152},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.084400505},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0218126623502201","pdf_url":null,"source":{"id":"https://openalex.org/S167602672","display_name":"Journal of Circuits Systems and Computers","issn_l":"0218-1266","issn":["0218-1266","1793-6454"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W2612690371","https://openalex.org/W2800806089","https://openalex.org/W2883059862","https://openalex.org/W2950863887","https://openalex.org/W2955338161","https://openalex.org/W2962804345","https://openalex.org/W2963318081","https://openalex.org/W2975156709","https://openalex.org/W2975296300","https://openalex.org/W2979359324","https://openalex.org/W2981096252","https://openalex.org/W2997437197","https://openalex.org/W3005170244","https://openalex.org/W3090437903","https://openalex.org/W3109847748","https://openalex.org/W3151873506","https://openalex.org/W3172743044","https://openalex.org/W3187036078","https://openalex.org/W3203789000","https://openalex.org/W3207972961","https://openalex.org/W4220677961","https://openalex.org/W4220754045"],"related_works":["https://openalex.org/W4381996401","https://openalex.org/W2949717367","https://openalex.org/W2901581617","https://openalex.org/W2544750528","https://openalex.org/W2169476964","https://openalex.org/W2037866349","https://openalex.org/W1986633584","https://openalex.org/W1976326851","https://openalex.org/W184546935","https://openalex.org/W146740654"],"abstract_inverted_index":{"Nowadays,":[0],"more":[1,3],"and":[2,100,189],"federated":[4,61,136],"learning":[5,62,74,80,98,129,137,166,179],"algorithms":[6],"have":[7],"been":[8],"implemented":[9],"in":[10,49,63,68],"edge":[11,29],"computing,":[12],"to":[13,82,120,125,131,158,168,183,194],"provide":[14],"various":[15],"customized":[16],"services":[17],"for":[18,60,135],"mobile":[19],"users,":[20],"which":[21,43,69],"has":[22],"strongly":[23],"supported":[24],"the":[25,39,50,70,79,97,101,128,132,145,161,165,169,173,184,196],"rapid":[26],"development":[27],"of":[28,33,72,198],"intelligence.":[30],"However,":[31],"most":[32],"them":[34],"are":[35,76,104,192],"designed":[36],"relying":[37],"on":[38],"reliable":[40],"device-to-device":[41],"communications,":[42],"is":[44,118,148],"not":[45],"a":[46,56,64,83,87,106,122],"realistic":[47,57],"assumption":[48],"wireless":[51,66,88],"environment.":[52],"This":[53],"paper":[54],"considers":[55],"aggregation":[58],"problem":[59],"single-hop":[65],"network,":[67],"parameters":[71,163],"machine":[73,178],"models":[75],"aggregated":[77,185],"from":[78,111,164],"agents":[81,99,130,167],"parameter":[84,102,133,170],"server":[85,103,134,174],"via":[86],"channel":[89],"with":[90],"physical":[91],"interference":[92],"constraint.":[93],"Assuming":[94],"that":[95,116],"all":[96,127,160],"within":[105,138],"distance":[107],"[Formula:":[108,139,153],"see":[109,140,154],"text]":[110,141,155],"each":[112],"other,":[113],"we":[114],"show":[115,195],"it":[117,150],"possible":[119],"construct":[121],"spanning":[123,146],"tree":[124,147],"connect":[126],"time":[142,156],"steps.":[143],"After":[144],"constructed,":[149],"only":[151],"takes":[152],"steps":[157],"aggregate":[159],"training":[162],"server.":[171],"Thus,":[172],"can":[175],"update":[176],"its":[177],"model":[180],"once":[181],"according":[182],"results.":[186],"Theoretical":[187],"analyses":[188],"numerical":[190],"simulations":[191],"conducted":[193],"performance":[197],"our":[199],"algorithm.":[200]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4317631255","counts_by_year":[],"updated_date":"2025-04-15T14:41:48.560909","created_date":"2023-01-21"}