{"id":"https://openalex.org/W3006796129","doi":"https://doi.org/10.1142/s021800142059048x","title":"MEMS Inertial Sensor Fault Diagnosis Using a CNN-Based Data-Driven Method","display_name":"MEMS Inertial Sensor Fault Diagnosis Using a CNN-Based Data-Driven Method","publication_year":2020,"publication_date":"2020-02-21","ids":{"openalex":"https://openalex.org/W3006796129","doi":"https://doi.org/10.1142/s021800142059048x","mag":"3006796129"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s021800142059048x","pdf_url":null,"source":{"id":"https://openalex.org/S41486457","display_name":"International Journal of Pattern Recognition and Artificial Intelligence","issn_l":"0218-0014","issn":["0218-0014","1793-6381"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101935395","display_name":"Tong Gao","orcid":"https://orcid.org/0009-0006-6706-6284"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Gao","raw_affiliation_strings":["School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37, Xueyuan Road, Haidian District, Beijing, P.\u00a0R.\u00a0China"],"affiliations":[{"raw_affiliation_string":"School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37, Xueyuan Road, Haidian District, Beijing, P.\u00a0R.\u00a0China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027533078","display_name":"Sheng Wei","orcid":"https://orcid.org/0000-0003-4943-3360"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Sheng","raw_affiliation_strings":["School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37, Xueyuan Road, Haidian District, Beijing, P.\u00a0R.\u00a0China"],"affiliations":[{"raw_affiliation_string":"School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37, Xueyuan Road, Haidian District, Beijing, P.\u00a0R.\u00a0China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107556956","display_name":"Mingliang Zhou","orcid":"https://orcid.org/0000-0002-1874-3641"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingliang Zhou","raw_affiliation_strings":["School of Computer Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, P.\u00a0R.\u00a0China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, P.\u00a0R.\u00a0China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046520540","display_name":"Bin Fang","orcid":"https://orcid.org/0000-0003-1955-6626"},"institutions":[{"id":"https://openalex.org/I158842170","display_name":"Chongqing University","ror":"https://ror.org/023rhb549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I158842170"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Fang","raw_affiliation_strings":["School of Computer Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, P.\u00a0R.\u00a0China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, P.\u00a0R.\u00a0China","institution_ids":["https://openalex.org/I158842170"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070592633","display_name":"Liping Zheng","orcid":"https://orcid.org/0000-0001-5071-9628"},"institutions":[{"id":"https://openalex.org/I196934937","display_name":"Liaocheng University","ror":"https://ror.org/03yh0n709","country_code":"CN","type":"funder","lineage":["https://openalex.org/I196934937"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liping Zheng","raw_affiliation_strings":["School of Computer Science, Liaocheng University, No. 1, Hunan Road, Dongchangfu District, Liaocheng City, Shandong, P.\u00a0R.\u00a0China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Liaocheng University, No. 1, Hunan Road, Dongchangfu District, Liaocheng City, Shandong, P.\u00a0R.\u00a0China","institution_ids":["https://openalex.org/I196934937"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.795,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.790383,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"34","issue":"14","first_page":"2059048","last_page":"2059048"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14257","display_name":"Advanced Measurement and Detection Methods","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14257","display_name":"Advanced Measurement and Detection Methods","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10534","display_name":"Structural Health Monitoring Techniques","score":0.9894,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9843,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.700929}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72344804},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.700929},{"id":"https://openalex.org/C128651787","wikidata":"https://www.wikidata.org/wiki/Q570607","display_name":"Inertial navigation system","level":3,"score":0.5977789},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.580542},{"id":"https://openalex.org/C79061980","wikidata":"https://www.wikidata.org/wiki/Q941680","display_name":"Inertial measurement unit","level":2,"score":0.56866515},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5627365},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.5591196},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.4926303},{"id":"https://openalex.org/C57869625","wikidata":"https://www.wikidata.org/wiki/Q1783502","display_name":"Rate of convergence","level":3,"score":0.48507443},{"id":"https://openalex.org/C37977207","wikidata":"https://www.wikidata.org/wiki/Q175561","display_name":"Microelectromechanical systems","level":2,"score":0.4743437},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47056934},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.422426},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.34698826},{"id":"https://openalex.org/C173386949","wikidata":"https://www.wikidata.org/wiki/Q192735","display_name":"Inertial frame of reference","level":2,"score":0.3429572},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3330419},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.07534203},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s021800142059048x","pdf_url":null,"source":{"id":"https://openalex.org/S41486457","display_name":"International Journal of Pattern Recognition and Artificial Intelligence","issn_l":"0218-0014","issn":["0218-0014","1793-6381"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W2039491987","https://openalex.org/W2039685557","https://openalex.org/W2076063813","https://openalex.org/W2081426005","https://openalex.org/W2105934661","https://openalex.org/W2293554285","https://openalex.org/W2331078436","https://openalex.org/W2485614840","https://openalex.org/W2559568760","https://openalex.org/W2582691781","https://openalex.org/W2592986175","https://openalex.org/W2593479727","https://openalex.org/W2611470368","https://openalex.org/W2740019636","https://openalex.org/W2762208441","https://openalex.org/W2765366036","https://openalex.org/W2768478721","https://openalex.org/W2768753204","https://openalex.org/W2774637283","https://openalex.org/W2789086965","https://openalex.org/W2793263498","https://openalex.org/W2799581077","https://openalex.org/W2800395558","https://openalex.org/W2800569739","https://openalex.org/W2804683829","https://openalex.org/W2807337530","https://openalex.org/W2870175540","https://openalex.org/W2891688427","https://openalex.org/W2893132081","https://openalex.org/W2894788235","https://openalex.org/W2901601932","https://openalex.org/W2913409381","https://openalex.org/W2917598233","https://openalex.org/W2918563609","https://openalex.org/W2919115771","https://openalex.org/W2926422816","https://openalex.org/W2930812010","https://openalex.org/W2961659836","https://openalex.org/W2964937757"],"related_works":["https://openalex.org/W4313886815","https://openalex.org/W4300961947","https://openalex.org/W4250716077","https://openalex.org/W4247347568","https://openalex.org/W2773722138","https://openalex.org/W2415234998","https://openalex.org/W2382856674","https://openalex.org/W2122146193","https://openalex.org/W2038183074","https://openalex.org/W2024124515"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,51,66,90,105],"propose":[4,106],"a":[5,32,61,68,131,164],"novel":[6],"fault":[7,20,92,143],"diagnosis":[8],"(FD)":[9],"approach":[10],"for":[11,56],"micro-electromechanical":[12],"systems":[13],"(MEMS)":[14],"inertial":[15,24,58,78],"sensors":[16,25,59,79],"that":[17,138,147],"recognize":[18],"the":[19,41,53,73,95,100,116,121,127],"patterns":[21],"of":[22,76,158],"MEMS":[23,57,77],"in":[26,45,94,156],"an":[27,107],"end-to-end":[28],"manner.":[29],"We":[30],"use":[31],"convolutional":[33],"neural":[34],"network":[35,128],"(CNN)-based":[36],"data-driven":[37],"method":[38,113,140,153],"to":[39,98,125],"classify":[40],"temperature-related":[42],"sensor":[43],"faults":[44],"unmanned":[46],"aerial":[47],"vehicles":[48],"(UAVs).":[49],"First,":[50],"formulate":[52],"FD":[54],"problem":[55],"into":[60],"deep":[62],"learning":[63,110,151],"framework.":[64],"Second,":[65],"design":[67],"multi-scale":[69],"CNN":[70],"which":[71,83,114],"uses":[72],"raw":[74],"data":[75],"as":[80],"input":[81],"and":[82,146,161],"outputs":[84],"classification":[85],"results":[86,136],"indicating":[87],"faults.":[88],"Then":[89],"extract":[91],"features":[93],"temperature":[96],"domain":[97],"solve":[99],"non-uniform":[101],"sampling":[102],"problem.":[103],"Finally,":[104],"improved":[108,154],"adaptive":[109,150],"rate":[111,152],"optimization":[112],"accelerates":[115],"loss":[117,159],"convergence":[118,160],"by":[119],"using":[120],"Kalman":[122],"filter":[123],"(KF)":[124],"train":[126],"efficiently":[129],"with":[130],"small":[132,165],"dataset.":[133],"Our":[134],"experimental":[135],"show":[137],"our":[139,148],"achieved":[141],"high":[142],"recognition":[144],"accuracy":[145],"proposed":[149],"performance":[155],"terms":[157],"robustness":[162],"on":[163],"training":[166],"batch.":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3006796129","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":4}],"updated_date":"2025-04-18T21:06:23.652945","created_date":"2020-03-06"}