{"id":"https://openalex.org/W2027077102","doi":"https://doi.org/10.1137/s0895479801393666","title":"Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition","display_name":"Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition","publication_year":2003,"publication_date":"2003-01-01","ids":{"openalex":"https://openalex.org/W2027077102","doi":"https://doi.org/10.1137/s0895479801393666","mag":"2027077102"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/s0895479801393666","pdf_url":null,"source":{"id":"https://openalex.org/S16958353","display_name":"SIAM Journal on Matrix Analysis and Applications","issn_l":"0895-4798","issn":["0895-4798","1095-7162"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.cc.gatech.edu/~hpark/papers/cgsvd.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073849697","display_name":"Peg Howland","orcid":null},"institutions":[{"id":"https://openalex.org/I130238516","display_name":"University of Minnesota","ror":"https://ror.org/017zqws13","country_code":"US","type":"education","lineage":["https://openalex.org/I130238516"]},{"id":"https://openalex.org/I154570441","display_name":"University of California, Santa Barbara","ror":"https://ror.org/02t274463","country_code":"US","type":"education","lineage":["https://openalex.org/I154570441"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peg Howland","raw_affiliation_strings":["Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455","Department of Computer Science, University of California, Santa Barbara, CA 93106"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455","institution_ids":["https://openalex.org/I130238516"]},{"raw_affiliation_string":"Department of Computer Science, University of California, Santa Barbara, CA 93106","institution_ids":["https://openalex.org/I154570441"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056743652","display_name":"Moongu Jeon","orcid":"https://orcid.org/0000-0002-2775-7789"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moongu Jeon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101728710","display_name":"Haesun Park","orcid":"https://orcid.org/0000-0001-6259-7170"},"institutions":[{"id":"https://openalex.org/I130238516","display_name":"University of Minnesota","ror":"https://ror.org/017zqws13","country_code":"US","type":"education","lineage":["https://openalex.org/I130238516"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Haesun Park","raw_affiliation_strings":["Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455","institution_ids":["https://openalex.org/I130238516"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":15.824,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":171,"citation_normalized_percentile":{"value":0.999947,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"25","issue":"1","first_page":"165","last_page":"179"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scatter-matrix","display_name":"Scatter matrix","score":0.5663774},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.54587966},{"id":"https://openalex.org/keywords/singular-value","display_name":"Singular value","score":0.44743508}],"concepts":[{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.7817486},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.6288409},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.6207049},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.59589726},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.5943489},{"id":"https://openalex.org/C176917957","wikidata":"https://www.wikidata.org/wiki/Q7430596","display_name":"Scatter matrix","level":4,"score":0.5663774},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.547848},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.54587966},{"id":"https://openalex.org/C96442724","wikidata":"https://www.wikidata.org/wiki/Q242188","display_name":"Invertible matrix","level":2,"score":0.5298495},{"id":"https://openalex.org/C78397625","wikidata":"https://www.wikidata.org/wiki/Q192487","display_name":"Discriminant","level":2,"score":0.491296},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.48790714},{"id":"https://openalex.org/C109282560","wikidata":"https://www.wikidata.org/wiki/Q4166054","display_name":"Singular value","level":3,"score":0.44743508},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43945625},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.408236},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2514441},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.1668829},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.1610893},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.111836106},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.11180362},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C180877172","wikidata":"https://www.wikidata.org/wiki/Q5401390","display_name":"Estimation of covariance matrices","level":3,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/s0895479801393666","pdf_url":null,"source":{"id":"https://openalex.org/S16958353","display_name":"SIAM Journal on Matrix Analysis and Applications","issn_l":"0895-4798","issn":["0895-4798","1095-7162"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.4580","pdf_url":"http://www.cc.gatech.edu/~hpark/papers/cgsvd.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.4580","pdf_url":"http://www.cc.gatech.edu/~hpark/papers/cgsvd.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W121371952","https://openalex.org/W1502904630","https://openalex.org/W1535854520","https://openalex.org/W1770825568","https://openalex.org/W1956559956","https://openalex.org/W1971784203","https://openalex.org/W1977271127","https://openalex.org/W1981745143","https://openalex.org/W1985852691","https://openalex.org/W1997841190","https://openalex.org/W2010315317","https://openalex.org/W2072773380","https://openalex.org/W2075665712","https://openalex.org/W2135346934","https://openalex.org/W2319660501","https://openalex.org/W2798909945","https://openalex.org/W3200813778","https://openalex.org/W4285719527","https://openalex.org/W4302564868"],"related_works":["https://openalex.org/W4386721910","https://openalex.org/W4382583540","https://openalex.org/W4378770618","https://openalex.org/W4319586039","https://openalex.org/W2358543744","https://openalex.org/W2164147222","https://openalex.org/W2148568324","https://openalex.org/W2147072251","https://openalex.org/W1990844505","https://openalex.org/W1607100495"],"abstract_inverted_index":{"In":[0,132],"today's":[1],"vector":[2],"space":[3],"information":[4],"retrieval":[5],"systems,":[6],"dimension":[7],"reduction":[8],"is":[9,76],"imperative":[10],"for":[11],"efficiently":[12],"manipulating":[13],"the":[14,31,42,57,63,80,95,102,111,120,125,129,135,141,145,154,159,163,172],"massive":[15],"quantity":[16],"of":[17,30,70,79,97,104,124,128,144,150,162,174],"data.":[18],"To":[19,35],"be":[20,26,84],"useful,":[21],"this":[22],"lower-dimensional":[23],"representation":[24],"must":[25,83],"a":[27],"good":[28],"approximation":[29],"full":[32],"document":[33,91],"set.":[34],"that":[36,77,108,170],"end,":[37],"we":[38,117,166],"adapt":[39],"and":[40],"extend":[41],"discriminant":[43,74],"analysis":[44,75],"projection":[45,51],"used":[46],"in":[47,73,93,148],"pattern":[48],"recognition.":[49],"This":[50],"preserves":[52],"cluster":[53],"structure":[54],"by":[55,109],"maximizing":[56],"scatter":[58,64,81,146],"between":[59],"clusters":[60],"while":[61],"minimizing":[62],"within":[65],"clusters.":[66],"A":[67],"common":[68],"limitation":[69],"trace":[71],"optimization":[72],"one":[78],"matrices":[82,147],"nonsingular,":[85],"which":[86,94],"restricts":[87],"its":[88],"application":[89],"to":[90,139],"sets":[92],"number":[96,103],"terms":[98],"does":[99],"not":[100],"exceed":[101],"documents.":[105],"We":[106],"show":[107],"using":[110],"generalized":[112],"singular":[113],"value":[114],"decomposition":[115],"(GSVD),":[116],"can":[118],"achieve":[119],"same":[121],"goal":[122],"regardless":[123],"relative":[126],"dimensions":[127],"term-document":[130],"matrix.":[131],"addition,":[133],"applying":[134],"GSVD":[136],"allows":[137],"us":[138],"avoid":[140],"explicit":[142],"formation":[143],"favor":[149],"working":[151],"directly":[152],"with":[153],"data":[155],"matrix,":[156],"thus":[157],"improving":[158],"numerical":[160],"properties":[161],"approach.":[164,176],"Finally,":[165],"present":[167],"experimental":[168],"results":[169],"confirm":[171],"effectiveness":[173],"our":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2027077102","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":7},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":6},{"year":2012,"cited_by_count":17}],"updated_date":"2024-12-13T17:49:26.122915","created_date":"2016-06-24"}