{"id":"https://openalex.org/W4225266577","doi":"https://doi.org/10.1137/21m1397866","title":"A Block Bidiagonalization Method for Fixed-Accuracy Low-Rank Matrix Approximation","display_name":"A Block Bidiagonalization Method for Fixed-Accuracy Low-Rank Matrix Approximation","publication_year":2022,"publication_date":"2022-04-27","ids":{"openalex":"https://openalex.org/W4225266577","doi":"https://doi.org/10.1137/21m1397866"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/21m1397866","pdf_url":null,"source":{"id":"https://openalex.org/S16958353","display_name":"SIAM Journal on Matrix Analysis and Applications","issn_l":"0895-4798","issn":["0895-4798","1095-7162"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2101.01247","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081221153","display_name":"Eric J. Hallman","orcid":"https://orcid.org/0000-0001-7908-2296"},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Eric Hallman","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5081221153"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.812,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.689664,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":"43","issue":"2","first_page":"661","last_page":"680"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10792","display_name":"Matrix Theory and Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10792","display_name":"Matrix Theory and Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13487","display_name":"Statistical and numerical algorithms","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2604","display_name":"Applied Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/block-matrix","display_name":"Block matrix","score":0.4981811},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.47127149},{"id":"https://openalex.org/keywords/low-rank-approximation","display_name":"Low-rank approximation","score":0.4636138},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.44714224}],"concepts":[{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.83687377},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.52453333},{"id":"https://openalex.org/C85817219","wikidata":"https://www.wikidata.org/wiki/Q884772","display_name":"Block matrix","level":3,"score":0.4981811},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.48247364},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.47127149},{"id":"https://openalex.org/C90199385","wikidata":"https://www.wikidata.org/wiki/Q6692777","display_name":"Low-rank approximation","level":3,"score":0.4636138},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.44714224},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.3930435},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.34894753},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.34039763},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34036016},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.241151},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.21214786},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C25023664","wikidata":"https://www.wikidata.org/wiki/Q1575637","display_name":"Hankel matrix","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/21m1397866","pdf_url":null,"source":{"id":"https://openalex.org/S16958353","display_name":"SIAM Journal on Matrix Analysis and Applications","issn_l":"0895-4798","issn":["0895-4798","1095-7162"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2101.01247","pdf_url":"http://arxiv.org/pdf/2101.01247","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2101.01247","pdf_url":"http://arxiv.org/pdf/2101.01247","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"DMS-1745654"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1964831500","https://openalex.org/W1981310773","https://openalex.org/W1982342918","https://openalex.org/W1983886273","https://openalex.org/W2005423095","https://openalex.org/W2014168697","https://openalex.org/W2015768950","https://openalex.org/W2017895259","https://openalex.org/W2035864055","https://openalex.org/W2083301425","https://openalex.org/W2083944885","https://openalex.org/W2095124951","https://openalex.org/W2117756735","https://openalex.org/W2123154475","https://openalex.org/W2158495995","https://openalex.org/W2962760844","https://openalex.org/W2963108114","https://openalex.org/W2963441460","https://openalex.org/W4242776319"],"related_works":["https://openalex.org/W4300656036","https://openalex.org/W4289115725","https://openalex.org/W3106318770","https://openalex.org/W2964184729","https://openalex.org/W2904061867","https://openalex.org/W2611130496","https://openalex.org/W2365701604","https://openalex.org/W2361403716","https://openalex.org/W1995891825","https://openalex.org/W1972759654"],"abstract_inverted_index":{"We":[0],"present":[1],"randUBV,":[2],"a":[3,17,22,118],"randomized":[4],"algorithm":[5,60],"for":[6,105],"matrix":[7,18],"sketching":[8],"based":[9],"on":[10],"the":[11,26,47,65,84,92,106,129],"block":[12,42,130],"Lanzcos":[13],"bidiagonalization":[14],"process.":[15],"Given":[16],"$\\mathbb{A}$,":[19],"it":[20],"produces":[21],"low-rank":[23],"approximation":[24,95],"of":[25,49,68,86,151],"form":[27],"$\\mathbb{UBV}^T$,":[28],"where":[29],"$\\mathbb{U}$":[30,51],"and":[31,39,52,71,91,109],"$\\mathbb{V}$":[32,53],"have":[33],"orthonormal":[34],"columns":[35,48],"in":[36,82],"exact":[37],"arithmetic":[38],"$\\mathbb{B}$":[40,87],"is":[41,61,102,111,123,133],"bidiagonal.":[43],"In":[44],"finite":[45],"precision,":[46],"both":[50],"will":[54],"be":[55,98],"close":[56],"to":[57,64,113,139],"orthonormal.":[58],"Our":[59],"closely":[62],"related":[63],"randQB":[66],"algorithms":[67,140],"Yu,":[69],"Gu,":[70],"Li":[72],"[SIAM":[73],"J.":[74],"Matrix":[75],"Anal.":[76],"Appl.,":[77],"39":[78],"(2018),":[79],"pp.":[80],"1339--1359].":[81],"that":[83,128,141],"entries":[85],"are":[88],"incrementally":[89],"generated":[90],"Frobenius":[93],"norm":[94],"error":[96,121],"may":[97],"efficiently":[99],"estimated.":[100],"It":[101],"therefore":[103],"suitable":[104],"fixed-accuracy":[107],"problem":[108],"so":[110],"designed":[112],"terminate":[114],"as":[115,117],"soon":[116],"user":[119],"input":[120],"tolerance":[122],"reached.":[124],"Numerical":[125],"experiments":[126],"suggest":[127],"Lanczos":[131],"method":[132],"generally":[134],"competitive":[135],"with":[136],"or":[137],"superior":[138],"use":[142],"power":[143],"iteration,":[144],"even":[145],"when":[146],"$\\mathbb{A}$":[147],"has":[148],"significant":[149],"clusters":[150],"singular":[152],"values.":[153]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225266577","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-05T02:58:07.893755","created_date":"2022-05-04"}