{"id":"https://openalex.org/W2547777900","doi":"https://doi.org/10.1137/16m1101684","title":"Infimal Convolution of Data Discrepancies for Mixed Noise Removal","display_name":"Infimal Convolution of Data Discrepancies for Mixed Noise Removal","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2547777900","doi":"https://doi.org/10.1137/16m1101684","mag":"2547777900"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/16m1101684","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1611.00690","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019449011","display_name":"Luca Calatroni","orcid":"https://orcid.org/0000-0003-3887-1859"},"institutions":[{"id":"https://openalex.org/I4210107641","display_name":"Centre de Math\u00e9matiques Appliqu\u00e9es","ror":"https://ror.org/012e1xn46","country_code":"FR","type":"facility","lineage":["https://openalex.org/I1294671590","https://openalex.org/I1326498283","https://openalex.org/I142476485","https://openalex.org/I4210107641","https://openalex.org/I4210141950","https://openalex.org/I4210145102"]},{"id":"https://openalex.org/I142476485","display_name":"\u00c9cole Polytechnique","ror":"https://ror.org/05hy3tk52","country_code":"FR","type":"education","lineage":["https://openalex.org/I142476485","https://openalex.org/I4210145102"]},{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]}],"countries":["FR"],"is_corresponding":true,"raw_author_name":"Luca Calatroni","raw_affiliation_strings":["Centre de Math\u00e9matiques Appliqu\u00e9es (CMAP) \u00c9cole Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex, France"],"affiliations":[{"raw_affiliation_string":"Centre de Math\u00e9matiques Appliqu\u00e9es (CMAP) \u00c9cole Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex, France","institution_ids":["https://openalex.org/I4210107641","https://openalex.org/I142476485","https://openalex.org/I1294671590"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068217099","display_name":"Juan Carlos De los Reyes","orcid":"https://orcid.org/0000-0003-2761-5382"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Juan Carlos De Los Reyes","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5033880300","display_name":"Carola\u2010Bibiane Sch\u00f6nlieb","orcid":"https://orcid.org/0000-0003-0099-6306"},"institutions":[{"id":"https://openalex.org/I241749","display_name":"University of Cambridge","ror":"https://ror.org/013meh722","country_code":"GB","type":"education","lineage":["https://openalex.org/I241749"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Carola-Bibiane Sch\u00f6nlieb","raw_affiliation_strings":["Department of Applied Mathematics and Theoretical Physics (DAMTP) University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK"],"affiliations":[{"raw_affiliation_string":"Department of Applied Mathematics and Theoretical Physics (DAMTP) University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK","institution_ids":["https://openalex.org/I241749"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5019449011"],"corresponding_institution_ids":["https://openalex.org/I4210107641","https://openalex.org/I142476485","https://openalex.org/I1294671590"],"apc_list":null,"apc_paid":null,"fwci":2.221,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":54,"citation_normalized_percentile":{"value":0.999934,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"10","issue":"3","first_page":"1196","last_page":"1233"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11205","display_name":"Inverse Problems in Mathematical Physics and Imaging","score":0.9776,"subfield":{"id":"https://openalex.org/subfields/2610","display_name":"Mathematical Physics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10928","display_name":"Uncertainty Quantification and Sensitivity Analysis","score":0.9732,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-denoising","display_name":"Image Denoising","score":0.638933},{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.554645},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization (linguistics)","score":0.53710306},{"id":"https://openalex.org/keywords/inverse-problems","display_name":"Inverse Problems","score":0.53089},{"id":"https://openalex.org/keywords/gradient-noise","display_name":"Gradient noise","score":0.5302721},{"id":"https://openalex.org/keywords/value-noise","display_name":"Value noise","score":0.5095587},{"id":"https://openalex.org/keywords/total-variation-denoising","display_name":"Total variation denoising","score":0.49960923},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.49290776},{"id":"https://openalex.org/keywords/salt-and-pepper-noise","display_name":"Salt-and-pepper noise","score":0.46572062}],"concepts":[{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.71705675},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.62050974},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.5506345},{"id":"https://openalex.org/C72659945","wikidata":"https://www.wikidata.org/wiki/Q1503574","display_name":"Shot noise","level":3,"score":0.5492357},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.54764885},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.53710306},{"id":"https://openalex.org/C200378446","wikidata":"https://www.wikidata.org/wiki/Q4147391","display_name":"Gradient noise","level":5,"score":0.5302721},{"id":"https://openalex.org/C182163834","wikidata":"https://www.wikidata.org/wiki/Q2926529","display_name":"Value noise","level":5,"score":0.5095587},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.50125957},{"id":"https://openalex.org/C207282899","wikidata":"https://www.wikidata.org/wiki/Q7828156","display_name":"Total variation denoising","level":3,"score":0.49960923},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.49290776},{"id":"https://openalex.org/C113660513","wikidata":"https://www.wikidata.org/wiki/Q849379","display_name":"Salt-and-pepper noise","level":5,"score":0.46572062},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.4532375},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.34895098},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33295676},{"id":"https://openalex.org/C29265498","wikidata":"https://www.wikidata.org/wiki/Q7047719","display_name":"Noise measurement","level":3,"score":0.30334815},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.25394902},{"id":"https://openalex.org/C55352655","wikidata":"https://www.wikidata.org/wiki/Q304247","display_name":"Median filter","level":4,"score":0.21448967},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.21242613},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19556615},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.14449233},{"id":"https://openalex.org/C187612029","wikidata":"https://www.wikidata.org/wiki/Q17083130","display_name":"Noise floor","level":4,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/16m1101684","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1611.00690","pdf_url":"https://arxiv.org/pdf/1611.00690","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1611.00690","pdf_url":"https://arxiv.org/pdf/1611.00690","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320313467","funder_display_name":"Alan Turing Institute","award_id":null},{"funder":"https://openalex.org/F4320319993","funder_display_name":"Leverhulme Trust","award_id":null},{"funder":"https://openalex.org/F4320320883","funder_display_name":"Agence Nationale de la Recherche","award_id":"ANR-12-IS01-0003"},{"funder":"https://openalex.org/F4320321181","funder_display_name":"Austrian Science Fund","award_id":"I1148"},{"funder":"https://openalex.org/F4320334627","funder_display_name":"Engineering and Physical Sciences Research Council","award_id":"EP/M00483X/1"},{"funder":"https://openalex.org/F4320334627","funder_display_name":"Engineering and Physical Sciences Research Council","award_id":"EP/N014588/1"},{"funder":"https://openalex.org/F4320334627","funder_display_name":"Engineering and Physical Sciences Research Council","award_id":"EP/H023348/1"}],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1868831826","https://openalex.org/W1970163214","https://openalex.org/W1984213606","https://openalex.org/W1993499237","https://openalex.org/W1995453118","https://openalex.org/W1997531064","https://openalex.org/W2000594266","https://openalex.org/W2005089986","https://openalex.org/W2011181254","https://openalex.org/W2018575953","https://openalex.org/W2018612061","https://openalex.org/W2033603511","https://openalex.org/W2036693278","https://openalex.org/W2039939700","https://openalex.org/W2043041472","https://openalex.org/W2046130462","https://openalex.org/W2075254304","https://openalex.org/W2082675951","https://openalex.org/W2098713549","https://openalex.org/W2103559027","https://openalex.org/W2105880637","https://openalex.org/W2110264793","https://openalex.org/W2137534136","https://openalex.org/W2149498546","https://openalex.org/W2167439109","https://openalex.org/W2254661996","https://openalex.org/W2327387119","https://openalex.org/W2334911726","https://openalex.org/W2349369506","https://openalex.org/W2405803404","https://openalex.org/W260788981","https://openalex.org/W2659457917","https://openalex.org/W2962782629","https://openalex.org/W3104072696","https://openalex.org/W4237956810"],"related_works":["https://openalex.org/W4379184580","https://openalex.org/W2980586888","https://openalex.org/W2499334499","https://openalex.org/W2365922257","https://openalex.org/W2306622391","https://openalex.org/W2262019715","https://openalex.org/W2120405331","https://openalex.org/W2116036791","https://openalex.org/W2027616686","https://openalex.org/W2020266320"],"abstract_inverted_index":{"We":[0,22,44,77],"consider":[1],"the":[2,8,63,74,99,109,121,124,145],"problem":[3],"of":[4,10,18,70,73,82,108,123],"image":[5,48],"denoising":[6,49],"in":[7,29],"presence":[9],"noise":[11,25,42,65,125,147],"whose":[12],"statistical":[13,80],"properties":[14],"are":[15,95,149],"a":[16,46,53,59,79,88],"combination":[17],"two":[19],"different":[20],"distributions.":[21,76],"focus":[23],"on":[24],"distributions":[26],"frequently":[27],"considered":[28],"applications,":[30],"such":[31],"as":[32,66,98],"salt":[33],"&":[34],"pepper":[35],"and":[36,38,40,58,138],"Gaussian,":[37],"Gaussian":[39],"Poisson":[41],"mixtures.":[43],"derive":[45],"variational":[47],"model":[50,84,110],"that":[51],"features":[52],"total":[54],"variation":[55],"regularization":[56],"term":[57],"data":[60],"discrepancy":[61,71],"encoding":[62],"mixed":[64,146],"an":[67],"infimal":[68],"convolution":[69],"terms":[72],"single-noise":[75,93],"give":[78],"derivation":[81],"this":[83],"by":[85],"joint":[86],"maximum":[87],"posteriori":[89],"(MAP)":[90],"estimation.":[91],"Classical":[92],"models":[94],"recovered":[96],"asymptotically":[97],"weighting":[100],"parameters":[101],"go":[102],"to":[103],"infinity.":[104],"The":[105,130],"numerical":[106,136],"solution":[107],"is":[111,132],"computed":[112],"using":[113],"second":[114],"order":[115],"Newton-type":[116],"methods.":[117],"Numerical":[118],"results":[119],"show":[120],"decomposition":[122],"into":[126],"its":[127],"constituting":[128],"components.":[129],"paper":[131],"furnished":[133],"with":[134,140,144],"several":[135],"experiments,":[137],"comparisons":[139],"other":[141],"methods":[142],"dealing":[143],"case":[148],"shown.":[150]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2547777900","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-04T07:10:17.294660","created_date":"2016-11-11"}