{"id":"https://openalex.org/W2692635131","doi":"https://doi.org/10.1137/16m1074163","title":"A Block Nonlocal TV Method for Image Restoration","display_name":"A Block Nonlocal TV Method for Image Restoration","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2692635131","doi":"https://doi.org/10.1137/16m1074163","mag":"2692635131"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/16m1074163","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100362043","display_name":"Jun Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jun Liu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5013055924","display_name":"Xiaojun Zheng","orcid":"https://orcid.org/0000-0003-4445-6256"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiaojun Zheng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.544,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":20,"citation_normalized_percentile":{"value":0.785229,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"10","issue":"2","first_page":"920","last_page":"941"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11205","display_name":"Numerical methods in inverse problems","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2610","display_name":"Mathematical Physics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11205","display_name":"Numerical methods in inverse problems","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2610","display_name":"Mathematical Physics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.8107347},{"id":"https://openalex.org/keywords/point-spread-function","display_name":"Point spread function","score":0.4168444}],"concepts":[{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.8107347},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.6672002},{"id":"https://openalex.org/C9810830","wikidata":"https://www.wikidata.org/wiki/Q635384","display_name":"Maximum a posteriori estimation","level":3,"score":0.5896266},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.56542695},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5599028},{"id":"https://openalex.org/C106430172","wikidata":"https://www.wikidata.org/wiki/Q6002272","display_name":"Image restoration","level":4,"score":0.5116663},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.4981103},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.47371668},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.42349878},{"id":"https://openalex.org/C69179731","wikidata":"https://www.wikidata.org/wiki/Q510427","display_name":"Point spread function","level":2,"score":0.4168444},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38917717},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.3228174},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.29738843},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.27689576},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.25752592},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/16m1074163","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.71,"display_name":"Sustainable cities and communities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11201032"},{"funder":"https://openalex.org/F4320322725","funder_display_name":"China Scholarship Council","award_id":"201506045019"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1963766113","https://openalex.org/W1973207753","https://openalex.org/W1973397772","https://openalex.org/W1979331265","https://openalex.org/W1994424757","https://openalex.org/W2019248995","https://openalex.org/W2020461703","https://openalex.org/W2029460515","https://openalex.org/W2033603511","https://openalex.org/W2038649727","https://openalex.org/W2045079989","https://openalex.org/W2050630265","https://openalex.org/W2056370875","https://openalex.org/W2060945009","https://openalex.org/W2072866006","https://openalex.org/W2097073572","https://openalex.org/W2100836571","https://openalex.org/W2103559027","https://openalex.org/W2116857329","https://openalex.org/W2119634769","https://openalex.org/W2126773133","https://openalex.org/W2136396015","https://openalex.org/W2142058898","https://openalex.org/W2150134853"],"related_works":["https://openalex.org/W2997591215","https://openalex.org/W2974904990","https://openalex.org/W2888591766","https://openalex.org/W2808332603","https://openalex.org/W2144336166","https://openalex.org/W2079262912","https://openalex.org/W2018534838","https://openalex.org/W2006843870","https://openalex.org/W1602455006","https://openalex.org/W1522749619"],"abstract_inverted_index":{"In":[0,153],"this":[1,98],"paper,":[2],"we":[3,83,102,155],"propose":[4,117],"a":[5,40,68,71,85,89,93,113,118,134,161],"block":[6,28],"nonlocal":[7,20,29,37,42,51,120,172],"total":[8],"variation":[9],"(TV)":[10],"regularization":[11,86,99],"method":[12,22,52,64,180],"for":[13,139,163],"image":[14,140],"restoration.":[15],"We":[16],"extend":[17,34],"the":[18,35,46,50,58,75,78,104,107,137,150,158,166,171,184,187],"existing":[19],"TV":[21,121,173],"in":[23,49,127],"two":[24],"aspects:":[25],"first,":[26],"some":[27],"operators":[30],"are":[31],"introduced":[32],"to":[33,116,149],"point-based":[36],"diffusion":[38,43],"as":[39,88,133],"block-based":[41,69,119],"process;":[44],"second,":[45],"weighting":[47,124],"function":[48,125],"can":[53,130,144,181],"be":[54,131,145],"adaptively":[55,147],"determined":[56],"by":[57],"cost":[59],"functional":[60,91],"itself.":[61],"The":[62,123],"proposed":[63,167],"is":[65],"derived":[66],"from":[67],"maximum":[70,109],"posteriori":[72],"estimation.":[73,152],"By":[74],"assumption":[76],"of":[77,80,92,106,136,160,165,186],"self-similarity":[79],"small":[81],"patches,":[82,141],"formulate":[84],"term":[87,100],"log-likelihood":[90],"mixture":[94],"model.":[95],"To":[96],"optimize":[97],"efficiently,":[101],"employ":[103],"idea":[105],"expectation":[108],"algorithm":[110],"and":[111,142],"give":[112],"variational":[114],"framework":[115],"regularization.":[122],"occurring":[126],"our":[128,179],"model":[129],"regarded":[132],"probability":[135],"similarity":[138],"it":[143],"updated":[146],"according":[148],"newest":[151],"addition,":[154],"mathematically":[156],"prove":[157],"existence":[159],"minimizer":[162],"one":[164],"models.":[168],"Compared":[169],"with":[170],"method,":[174],"numerical":[175],"results":[176],"show":[177],"that":[178],"greatly":[182],"improve":[183],"quality":[185],"restored":[188],"images,":[189],"especially":[190],"under":[191],"heavy":[192],"noise.":[193]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2692635131","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":5}],"updated_date":"2025-02-20T18:01:14.150404","created_date":"2017-06-30"}