{"id":"https://openalex.org/W2036564429","doi":"https://doi.org/10.1137/120867032","title":"Efficient Structured Multifrontal Factorization for General Large Sparse Matrices","display_name":"Efficient Structured Multifrontal Factorization for General Large Sparse Matrices","publication_year":2013,"publication_date":"2013-01-01","ids":{"openalex":"https://openalex.org/W2036564429","doi":"https://doi.org/10.1137/120867032","mag":"2036564429"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/120867032","pdf_url":null,"source":{"id":"https://openalex.org/S165512578","display_name":"SIAM Journal on Scientific Computing","issn_l":"1064-8275","issn":["1064-8275","1095-7197"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047496441","display_name":"Jianlin Xia","orcid":"https://orcid.org/0000-0002-9653-9312"},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Jianlin Xia","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5047496441"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.844,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":101,"citation_normalized_percentile":{"value":0.967542,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"35","issue":"2","first_page":"A832","last_page":"A860"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10792","display_name":"Matrix Theory and Algorithms","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10792","display_name":"Matrix Theory and Algorithms","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10739","display_name":"Electromagnetic Scattering and Analysis","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9692,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.6084114},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.5406032},{"id":"https://openalex.org/keywords/block-matrix","display_name":"Block matrix","score":0.48234102},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.47899196},{"id":"https://openalex.org/keywords/lu-decomposition","display_name":"LU decomposition","score":0.44620484},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.43715253}],"concepts":[{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.7322494},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.6084114},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.60569406},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5454803},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.5406032},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.53552425},{"id":"https://openalex.org/C130367717","wikidata":"https://www.wikidata.org/wiki/Q189791","display_name":"Diagonal","level":2,"score":0.49257666},{"id":"https://openalex.org/C85817219","wikidata":"https://www.wikidata.org/wiki/Q884772","display_name":"Block matrix","level":3,"score":0.48234102},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.47899196},{"id":"https://openalex.org/C134978465","wikidata":"https://www.wikidata.org/wiki/Q1654069","display_name":"Incomplete LU factorization","level":4,"score":0.4471915},{"id":"https://openalex.org/C123213974","wikidata":"https://www.wikidata.org/wiki/Q833089","display_name":"LU decomposition","level":4,"score":0.44620484},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.43715253},{"id":"https://openalex.org/C31487907","wikidata":"https://www.wikidata.org/wiki/Q1154597","display_name":"Polygon mesh","level":2,"score":0.41859686},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.4087291},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.40657526},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.34890163},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.29917836},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28577647},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.205668},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/120867032","pdf_url":null,"source":{"id":"https://openalex.org/S165512578","display_name":"SIAM Journal on Scientific Computing","issn_l":"1064-8275","issn":["1064-8275","1095-7197"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1584657480","https://openalex.org/W1965482218","https://openalex.org/W1973786815","https://openalex.org/W1985858472","https://openalex.org/W2005882095","https://openalex.org/W2009272201","https://openalex.org/W2013144881","https://openalex.org/W2018419001","https://openalex.org/W2019166112","https://openalex.org/W2021036023","https://openalex.org/W2031990962","https://openalex.org/W2042199958","https://openalex.org/W2050746438","https://openalex.org/W2060492405","https://openalex.org/W2061782500","https://openalex.org/W2063675347","https://openalex.org/W2069491387","https://openalex.org/W2070581206","https://openalex.org/W2073469129","https://openalex.org/W2075490698","https://openalex.org/W2080741651","https://openalex.org/W2087905200","https://openalex.org/W2089958289","https://openalex.org/W2095508660","https://openalex.org/W2097822652","https://openalex.org/W2098102734","https://openalex.org/W2106150226","https://openalex.org/W2114583457","https://openalex.org/W2136798662","https://openalex.org/W2137541800","https://openalex.org/W2141719776","https://openalex.org/W2156164638","https://openalex.org/W4294988936","https://openalex.org/W80638212"],"related_works":["https://openalex.org/W4384637869","https://openalex.org/W4318969829","https://openalex.org/W4289119257","https://openalex.org/W4246966070","https://openalex.org/W3014000538","https://openalex.org/W2964496048","https://openalex.org/W2904573237","https://openalex.org/W2051917325","https://openalex.org/W1997196200","https://openalex.org/W156354643"],"abstract_inverted_index":{"Rank":[0],"structures":[1],"provide":[2],"an":[3,125,237],"opportunity":[4],"to":[5,115,156,175,250],"develop":[6],"new":[7],"efficient":[8],"numerical":[9],"methods":[10],"for":[11,38,148],"practical":[12],"problems,":[13],"when":[14],"the":[15,50,60,82,96,105,108,120,136,145,158,194,198,203,253,262,265],"off-diagonal":[16,255],"blocks":[17],"of":[18,34,62,85,107,124,200,239,264,292],"certain":[19,64,169,201],"dense":[20,160,172],"intermediate":[21,159,254],"matrices":[22],"have":[23],"small":[24],"(numerical)":[25],"ranks.":[26],"In":[27,191],"this":[28,244],"work,":[29],"we":[30],"present":[31],"a":[32,86,91,102,279],"framework":[33],"structured":[35,66,164,294],"direct":[36],"factorizations":[37,150,161],"general":[39,46,186],"sparse":[40,149,280],"matrices,":[41],"including":[42],"discretized":[43,271],"PDEs":[44],"on":[45,49,73],"meshes,":[47],"based":[48],"multifrontal":[51,146],"method":[52,147,167,245,266],"and":[53,180,184,212,224,269],"hierarchically":[54],"semiseparable":[55],"(HSS)":[56],"matrices.":[57],"We":[58,260],"prove":[59],"idea":[61,112,238],"replacing":[63],"complex":[65],"operations":[67],"by":[68],"fast":[69,163,293],"simple":[70],"ones":[71],"performed":[72],"compact":[74],"reduced":[75,100],"matrix":[76,89,127,195,281],"forms.":[77],"Such":[78],"forms":[79],"result":[80],"from":[81,197,278],"hierarchical":[83],"factorization":[84,123,204],"tree-structured":[87],"HSS":[88,126],"in":[90,119,209,218,229,289],"ULV-type":[92],"scheme,":[93],"so":[94,154,173,242],"that":[95,243],"tree":[97],"structure":[98],"is":[99,113,181,246],"into":[101,144,162],"single":[103],"node,":[104],"root":[106],"original":[109],"tree.":[110],"This":[111,166],"shown":[114],"be":[116],"very":[117],"useful":[118,288],"partial":[121],"ULV":[122],"(for":[128],"quickly":[129],"computing":[130],"Schur":[131,170],"complements)":[132],"as":[133,135,155,174,273,275],"well":[134,274],"solution":[137,222],"stage.":[138],"These":[139,232],"techniques":[140],"are":[141,226,234,257,286],"then":[142],"built":[143],"after":[151],"nested":[152],"dissection,":[153],"convert":[157],"ones.":[165],"keeps":[168],"complements":[171],"avoid":[176],"complicated":[177],"data":[178],"assembly,":[179],"much":[182],"simpler":[183],"more":[185,247],"than":[187],"some":[188],"existing":[189],"methods.":[190],"particular,":[192],"if":[193],"arises":[196],"discretization":[199],"PDEs,":[202],"costs":[205],"roughly":[206,213],"$O(n)$":[207,228],"flops":[208,215],"two":[210],"dimensions,":[211],"$O(n^{4/3})$":[214],"or":[216],"less":[217],"three":[219],"dimensions.":[220],"The":[221,283],"cost":[223],"memory":[225],"nearly":[227],"both":[230],"cases.":[231],"counts":[233],"obtained":[235],"with":[236,267],"rank":[240],"relaxation,":[241],"generally":[248],"applicable":[249],"problems":[251],"where":[252],"ranks":[256],"not":[258],"small.":[259],"demonstrate":[261],"performance":[263],"two-":[268],"three-dimensional":[270],"equations,":[272],"various":[276],"examples":[277],"collection.":[282],"ideas":[284],"here":[285],"also":[287],"future":[290],"developments":[291],"solvers.":[295]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2036564429","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":6},{"year":2017,"cited_by_count":34},{"year":2016,"cited_by_count":9},{"year":2015,"cited_by_count":12},{"year":2014,"cited_by_count":5},{"year":2013,"cited_by_count":5},{"year":2012,"cited_by_count":4}],"updated_date":"2025-03-21T18:47:27.478688","created_date":"2016-06-24"}