{"id":"https://openalex.org/W2041197198","doi":"https://doi.org/10.1137/110850372","title":"A Convex Max-Flow Approach to Distribution-Based Figure-Ground Separation","display_name":"A Convex Max-Flow Approach to Distribution-Based Figure-Ground Separation","publication_year":2012,"publication_date":"2012-01-01","ids":{"openalex":"https://openalex.org/W2041197198","doi":"https://doi.org/10.1137/110850372","mag":"2041197198"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/110850372","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069854748","display_name":"Kumaradevan Punithakumar","orcid":"https://orcid.org/0000-0003-3835-1079"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kumaradevan Punithakumar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101561039","display_name":"Jing Yuan","orcid":"https://orcid.org/0000-0002-3548-5875"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jing Yuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053292735","display_name":"Ismail Ben Ayed","orcid":"https://orcid.org/0000-0002-9668-8027"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ismail Ben Ayed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100386630","display_name":"Shuo Li","orcid":"https://orcid.org/0000-0002-5184-3230"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shuo Li","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5028352869","display_name":"Yuri Boykov","orcid":"https://orcid.org/0000-0001-6374-1736"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yuri Boykov","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.466,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":24,"citation_normalized_percentile":{"value":0.877178,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"5","issue":"4","first_page":"1333","last_page":"1354"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.992,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bhattacharyya-distance","display_name":"Bhattacharyya distance","score":0.7414258}],"concepts":[{"id":"https://openalex.org/C24145651","wikidata":"https://www.wikidata.org/wiki/Q2901249","display_name":"Bhattacharyya distance","level":2,"score":0.7414258},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6253333},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.590431},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5441971},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.53187454},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.51397556},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47863975},{"id":"https://openalex.org/C2776029896","wikidata":"https://www.wikidata.org/wiki/Q3935810","display_name":"Relaxation (psychology)","level":2,"score":0.47068933},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.41079438},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3257415},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.14775261},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.12353331},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.089641064},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.07765883},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/110850372","pdf_url":null,"source":{"id":"https://openalex.org/S152600803","display_name":"SIAM Journal on Imaging Sciences","issn_l":"1936-4954","issn":["1936-4954"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.47,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":61,"referenced_works":["https://openalex.org/W1489458628","https://openalex.org/W1533665822","https://openalex.org/W1536031884","https://openalex.org/W1579559187","https://openalex.org/W1606763436","https://openalex.org/W1635155787","https://openalex.org/W1669104078","https://openalex.org/W1759347593","https://openalex.org/W1964884769","https://openalex.org/W1980360173","https://openalex.org/W2002531683","https://openalex.org/W2008428344","https://openalex.org/W2019393228","https://openalex.org/W2029174407","https://openalex.org/W2038495454","https://openalex.org/W2042811593","https://openalex.org/W2079690285","https://openalex.org/W2104028907","https://openalex.org/W2106569125","https://openalex.org/W2108447811","https://openalex.org/W2112301665","https://openalex.org/W2113137767","https://openalex.org/W2118020555","https://openalex.org/W2118802082","https://openalex.org/W2119300483","https://openalex.org/W2122643004","https://openalex.org/W2124351162","https://openalex.org/W2129260071","https://openalex.org/W2132103241","https://openalex.org/W2134886193","https://openalex.org/W2135095945","https://openalex.org/W2135779729","https://openalex.org/W2142761958","https://openalex.org/W2143516773","https://openalex.org/W2146033519","https://openalex.org/W2155697938","https://openalex.org/W2156001867","https://openalex.org/W2157096488","https://openalex.org/W2157244733","https://openalex.org/W2157570139","https://openalex.org/W2158112757","https://openalex.org/W2159152281","https://openalex.org/W2169551590","https://openalex.org/W2171675999","https://openalex.org/W2171898823","https://openalex.org/W2186531643","https://openalex.org/W2295160225","https://openalex.org/W2406442301","https://openalex.org/W2533218643","https://openalex.org/W2535901150","https://openalex.org/W2598388843","https://openalex.org/W2752885492","https://openalex.org/W2798766386","https://openalex.org/W2798817241","https://openalex.org/W3145128584","https://openalex.org/W3150717011","https://openalex.org/W3151807555","https://openalex.org/W4213060883","https://openalex.org/W4229971152","https://openalex.org/W4236965008","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4244450895","https://openalex.org/W3149747767","https://openalex.org/W2366937720","https://openalex.org/W2192403599","https://openalex.org/W2163087802","https://openalex.org/W2155818328","https://openalex.org/W2121699558","https://openalex.org/W2074399518","https://openalex.org/W1982681402","https://openalex.org/W1536747792"],"abstract_inverted_index":{"This":[0,103],"study":[1],"investigates":[2],"a":[3,11,26,32,62,73,91,106,125],"convex":[4,65,115],"relaxation":[5,69],"approach":[6,149],"to":[7,24,46,85,105,113,132],"figure-ground":[8],"separation":[9],"with":[10],"global":[12,130],"distribution":[13],"matching":[14],"prior":[15],"evaluated":[16],"by":[17,41,53],"the":[18,67,77,114,133,142],"Bhattacharyya":[19,78],"measure.":[20],"The":[21],"problem":[22],"amounts":[23],"finding":[25],"region":[27],"that":[28,95,123,147],"most":[29],"closely":[30],"matches":[31],"known":[33],"model":[34],"distribution.":[35],"It":[36],"has":[37],"been":[38],"previously":[39],"addressed":[40],"curve":[42],"evolution,":[43],"which":[44,56,80,110],"leads":[45,104],"suboptimal":[47],"and":[48,129,154],"computationally":[49],"intensive":[50],"algorithms,":[51],"or":[52],"graph":[54],"cuts,":[55],"result":[57],"in":[58,152],"metrication":[59],"errors.":[60],"Solving":[61],"sequence":[63],"of":[64,76],"subproblems,":[66],"proposed":[68],"is":[70,111],"based":[71],"on":[72,141],"novel":[74,92],"bound":[75],"measure":[79],"yields":[81,127,150],"an":[82],"algorithm":[83],"robust":[84],"initial":[86],"conditions.":[87],"Furthermore,":[88],"we":[89,118],"propose":[90],"flow":[93],"configuration":[94],"accounts":[96],"for":[97],"labeling-function":[98],"variations,":[99],"unlike":[100],"existing":[101],"configurations.":[102],"new":[107],"max-flow":[108],"formulation":[109,126],"dual":[112],"relaxed":[116],"subproblems":[117],"obtained.":[119],"We":[120],"further":[121],"prove":[122],"such":[124],"exact":[128],"solutions":[131],"original,":[134],"nonconvex":[135],"subproblems.":[136],"A":[137],"comprehensive":[138],"experimental":[139],"evaluation":[140],"Microsoft":[143],"GrabCut":[144],"database":[145],"demonstrates":[146],"our":[148],"improvements":[151],"optimality":[153],"accuracy":[155],"over":[156],"related":[157],"recent":[158],"methods.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2041197198","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":8},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":3}],"updated_date":"2024-12-13T17:45:12.358916","created_date":"2016-06-24"}