{"id":"https://openalex.org/W3207792616","doi":"https://doi.org/10.1137/1.9781611977172.25","title":"IB-GAN: A Unified Approach for Multivariate Time Series Classification under Class Imbalance","display_name":"IB-GAN: A Unified Approach for Multivariate Time Series Classification under Class Imbalance","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W3207792616","doi":"https://doi.org/10.1137/1.9781611977172.25","mag":"3207792616"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611977172.25","pdf_url":null,"source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2110.07460","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085865715","display_name":"Grace Deng","orcid":"https://orcid.org/0000-0002-0323-9231"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Grace Deng","raw_affiliation_strings":["cornell University"],"affiliations":[{"raw_affiliation_string":"cornell University","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061088566","display_name":"Cuize Han","orcid":"https://orcid.org/0000-0003-3957-0687"},"institutions":[{"id":"https://openalex.org/I4210089985","display_name":"Amazon (Germany)","ror":"https://ror.org/00b9ktm87","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210089985"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Cuize Han","raw_affiliation_strings":["Amazon"],"affiliations":[{"raw_affiliation_string":"Amazon","institution_ids":["https://openalex.org/I4210089985"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084296935","display_name":"Tommaso Dreossi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tommaso Dreossi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008515166","display_name":"Clarence Lee","orcid":"https://orcid.org/0000-0001-6912-4800"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Clarence Lee","raw_affiliation_strings":["cornell University"],"affiliations":[{"raw_affiliation_string":"cornell University","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051412963","display_name":"David S. Matteson","orcid":"https://orcid.org/0000-0002-2674-0387"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David S. Matteson","raw_affiliation_strings":["cornell University"],"affiliations":[{"raw_affiliation_string":"cornell University","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.911,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.999882,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"217","last_page":"225"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.7711439},{"id":"https://openalex.org/keywords/imputation","display_name":"Imputation (statistics)","score":0.63764715},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.48163596},{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.4259172}],"concepts":[{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.7711439},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67427737},{"id":"https://openalex.org/C58041806","wikidata":"https://www.wikidata.org/wiki/Q1660484","display_name":"Imputation (statistics)","level":3,"score":0.63764715},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.55984026},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5439068},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.48163596},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.46856147},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44217023},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42923546},{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.4259172},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38370422},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3208236},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.25550708},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18698692},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1761935},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.116547585},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611977172.25","pdf_url":null,"source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.07460","pdf_url":"https://arxiv.org/pdf/2110.07460","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.07460","pdf_url":"https://arxiv.org/pdf/2110.07460","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.7,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1850325679","https://openalex.org/W2099471712","https://openalex.org/W2100960835","https://openalex.org/W2125389028","https://openalex.org/W2148143831","https://openalex.org/W2173520492","https://openalex.org/W218853445","https://openalex.org/W2234964355","https://openalex.org/W2378208052","https://openalex.org/W2434741482","https://openalex.org/W2548275288","https://openalex.org/W2563852449","https://openalex.org/W2584805976","https://openalex.org/W2596763562","https://openalex.org/W2598525681","https://openalex.org/W2622068151","https://openalex.org/W2754051771","https://openalex.org/W2767106145","https://openalex.org/W2785011159","https://openalex.org/W2795144650","https://openalex.org/W2886572283","https://openalex.org/W2890686416","https://openalex.org/W2892035503","https://openalex.org/W2918561081","https://openalex.org/W2921405361","https://openalex.org/W2950365845","https://openalex.org/W2952267276","https://openalex.org/W2952477728","https://openalex.org/W2954295695","https://openalex.org/W2954996726","https://openalex.org/W2962932373","https://openalex.org/W2963258546","https://openalex.org/W2963373786","https://openalex.org/W2963552443","https://openalex.org/W2963855547","https://openalex.org/W2966337615","https://openalex.org/W2969896603","https://openalex.org/W2970360512","https://openalex.org/W2988244882","https://openalex.org/W2998010409","https://openalex.org/W2998508940","https://openalex.org/W3101136263","https://openalex.org/W3104735394","https://openalex.org/W3109901740","https://openalex.org/W3157699413"],"related_works":["https://openalex.org/W4380714744","https://openalex.org/W4319453655","https://openalex.org/W4293202849","https://openalex.org/W2964218010","https://openalex.org/W2964074194","https://openalex.org/W2596763562","https://openalex.org/W2387995142","https://openalex.org/W2089959425","https://openalex.org/W1980965563","https://openalex.org/W1489300767"],"abstract_inverted_index":{"Classification":[0],"of":[1,19,37,100,111],"large":[2],"multivariate":[3],"time":[4],"series":[5],"with":[6,42,133],"strong":[7],"class":[8,20],"imbalance":[9],"is":[10,122],"an":[11,71],"important":[12],"task":[13],"in":[14,66,139],"real-world":[15],"applications.":[16],"Standard":[17],"methods":[18],"weights,":[21],"over-sampling,":[22],"or":[23],"parametric":[24,162],"data":[25,40,62,150],"augmentation":[26,41,63],"do":[27],"not":[28],"always":[29],"yield":[30],"significant":[31,157],"improvements":[32],"for":[33,109,142],"predicting":[34],"minority":[35],"classes":[36],"interest.":[38],"Non-parametric":[39],"Generative":[43],"Adversarial":[44],"Networks":[45],"(GANs)":[46],"offers":[47],"a":[48,57,67,97,134,152],"promising":[49],"solution.":[50],"We":[51],"propose":[52],"Imputation":[53,105],"Balanced":[54],"GAN":[55,164],"(IB-GAN),":[56],"novel":[58],"method":[59],"that":[60],"joins":[61],"and":[64,77,93,102,126,137,151,163],"classification":[65,95],"one-step":[68],"process":[69],"via":[70,118],"imputation-balancing":[72],"approach.":[73],"IB-GAN":[74,121],"uses":[75],"imputation":[76],"resampling":[78],"techniques":[79],"to":[80,124],"generate":[81],"higher":[82,140],"quality":[83],"samples":[84],"from":[85,90],"randomly":[86],"masked":[87],"vectors":[88],"than":[89],"white":[91],"noise,":[92],"augments":[94],"through":[96],"class-balanced":[98],"set":[99],"real":[101],"synthetic":[103],"samples.":[104],"hyperparameter":[106],"pmiss":[107],"allows":[108],"regularization":[110],"classifier":[112,132],"variability":[113],"by":[114],"tuning":[115],"innovations":[116],"introduced":[117],"generator":[119],"imputation.":[120],"simple":[123],"train":[125],"model-agnostic,":[127],"pairing":[128],"any":[129],"deep":[130],"learning":[131],"generator-discriminator":[135],"duo":[136],"resulting":[138],"accuracy":[141],"under-observed":[143],"classes.":[144],"Empirical":[145],"experiments":[146],"on":[147],"open-source":[148],"UCR":[149],"90K":[153],"product":[154],"dataset":[155],"show":[156],"performance":[158],"gains":[159],"against":[160],"state-of-the-art":[161],"baselines.MSC":[165],"codestime":[166],"seriesimbalanced":[167],"classificationdata":[168],"augmentationmachine":[169],"learninggenerative":[170],"adversarial":[171],"networks":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3207792616","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-05T16:52:44.487089","created_date":"2021-10-25"}