{"id":"https://openalex.org/W4206278980","doi":"https://doi.org/10.1137/1.9781611977042.13","title":"Perturbation Analysis of Practical Algorithms for the Maximum Scatter Travelling Salesman Problem","display_name":"Perturbation Analysis of Practical Algorithms for the Maximum Scatter Travelling Salesman Problem","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4206278980","doi":"https://doi.org/10.1137/1.9781611977042.13"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611977042.13","pdf_url":null,"source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000958477","display_name":"Emil Biju","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Emil Biju","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086906870","display_name":"Sundar Raman P.","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sundar Raman P.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":"158","last_page":"168"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12176","display_name":"Optimization and Packing Problems","score":0.8979,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12176","display_name":"Optimization and Packing Problems","score":0.8979,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.8634,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.8202,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C175859090","wikidata":"https://www.wikidata.org/wiki/Q322212","display_name":"Travelling salesman problem","level":2,"score":0.8304852},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.65697986},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6161167},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60897154},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.49835157},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.47106284},{"id":"https://openalex.org/C177918212","wikidata":"https://www.wikidata.org/wiki/Q803623","display_name":"Perturbation (astronomy)","level":2,"score":0.4132385},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.4119885},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2707984},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22670603},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611977042.13","pdf_url":null,"source":{"id":"https://openalex.org/S4306463922","display_name":"Society for Industrial and Applied Mathematics eBooks","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"ebook platform"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.41,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389782626","https://openalex.org/W4306878646","https://openalex.org/W3157689847","https://openalex.org/W2913191894","https://openalex.org/W2361554335","https://openalex.org/W2359992618","https://openalex.org/W2164188042","https://openalex.org/W2054495636","https://openalex.org/W2046552997","https://openalex.org/W1525389557"],"abstract_inverted_index":{"Previous":[0,264],"chapter":[1,3,265,267],"Next":[2,266],"Full":[4],"AccessProceedings":[5],"2022":[6],"Proceedings":[7],"of":[8,18,57,81,90,98,113,165,239,261],"the":[9,22,58,88,91,154,181,234,253,259,262],"Symposium":[10],"on":[11,141,208,252],"Algorithm":[12],"Engineering":[13],"and":[14,29,34,64,75,120,125,135,157,162,237,255],"Experiments":[15],"(ALENEX)Perturbation":[16],"Analysis":[17],"Practical":[19],"Algorithms":[20],"for":[21,109,174],"Maximum":[23,48],"Scatter":[24,49],"Travelling":[25],"Salesman":[26,51,61],"ProblemEmil":[27],"Biju":[28,33],"Sundar":[30,35],"Raman":[31,36],"P.Emil":[32],"P.pp.158":[37],"-":[38],"168Chapter":[39],"DOI:https://doi.org/10.1137/1.9781611977042.13PDFBibTexSections":[40],"ToolsAdd":[41],"to":[42,86,152,203],"favoritesExport":[43],"CitationTrack":[44],"CitationsEmail":[45],"SectionsAboutAbstract":[46],"The":[47,79],"Traveling":[50,60],"Problem":[52,62],"(MSTSP)":[53],"is":[54,85],"a":[55,96,138,160,248],"variant":[56],"famous":[59],"(TSP)":[63],"finds":[65],"its":[66],"use":[67,227,260],"in":[68,95,123,180,191,225],"several":[69,103],"real-world":[70,192],"applications":[71,147],"including":[72],"manufacturing,":[73],"imaging":[74],"laser":[76],"melting":[77],"processes.":[78],"objective":[80],"this":[82,110,168],"NP-hard":[83],"problem":[84],"maximize":[87],"cost":[89,93],"least":[92],"edge":[94],"tour":[97],"an":[99],"input":[100],"graph.":[101],"While":[102],"approximation":[104,143],"algorithms":[105,130,173,207,221,241],"have":[106,131],"been":[107,133],"proposed":[108],"problem,":[111],"many":[112],"them":[114],"suffer":[115],"from":[116],"bad":[117,217],"worst-case":[118,218],"complexities":[119],"present":[121],"challenges":[122],"scalability":[124],"practical":[126,146,226],"use.":[127],"Besides,":[128],"these":[129,206],"often":[132],"designed":[134],"evaluated":[136],"with":[137,184,258],"sole":[139],"focus":[140],"theoretical":[142],"quality,":[144],"while":[145],"require":[148],"detailed":[149],"experimental":[150,197],"evaluations":[151],"study":[153],"stability,":[155],"quality":[156,236],"runtime":[158],"over":[159],"large":[161],"diverse":[163],"set":[164],"inputs.":[166],"In":[167],"work,":[169],"we":[170,195],"describe":[171],"six":[172],"MSTSP":[175],"inspired":[176],"by":[177,200],"prior":[178],"work":[179],"area,":[182],"along":[183],"improved":[185],"formulations":[186],"that":[187,214,242],"enhance":[188],"their":[189],"utility":[190],"scenarios.":[193],"Further,":[194],"perform":[196,222],"studies":[198],"motivated":[199],"smoothed":[201],"analysis":[202],"comprehensively":[204],"evaluate":[205],"various":[209],"performance":[210],"metrics.":[211],"We":[212],"demonstrate":[213],"despite":[215],"having":[216],"complexities,":[219],"certain":[220],"exceedingly":[223],"well":[224],"cases.":[228],"Our":[229],"experiments":[230],"reveal":[231],"trade-offs":[232],"among":[233],"runtime,":[235],"stability":[238],"different":[240],"must":[243],"be":[244],"considered":[245],"when":[246],"making":[247],"design":[249],"choice":[250],"depending":[251],"objectives":[254],"constraints":[256],"associated":[257],"algorithm.":[263],"RelatedDetails":[268],"Published:2022eISBN:978-1-61197-704-2":[269],"https://doi.org/10.1137/1.9781611977042Book":[270],"Series":[271],"Name:ProceedingsBook":[272],"Code:PRAL22Book":[273],"Pages:iii-220":[274]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206278980","counts_by_year":[],"updated_date":"2025-03-05T04:24:00.559891","created_date":"2022-01-26"}