{"id":"https://openalex.org/W1541505110","doi":"https://doi.org/10.1137/1.9781611972801.72","title":"A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy","display_name":"A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy","publication_year":2010,"publication_date":"2010-04-29","ids":{"openalex":"https://openalex.org/W1541505110","doi":"https://doi.org/10.1137/1.9781611972801.72","mag":"1541505110"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611972801.72","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://figshare.com/articles/journal_contribution/A_Probabilistic_Framework_to_Learn_from_Multiple_Annotators_with_Time-Varying_Accuracy/6620732/1/files/12117134.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022168672","display_name":"P\u0131nar D\u00f6nmez","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pinar Donmez","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, United States","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109861718","display_name":"Jaime Carbonell","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jaime Carbonell","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, United States","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055199976","display_name":"Jeff Schneider","orcid":"https://orcid.org/0000-0002-5080-9073"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jeff Schneider","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, United States","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.784,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":97,"citation_normalized_percentile":{"value":0.91548,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.42856526}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85627604},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.69858533},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6850532},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54803294},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49736336},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.47601992},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.42856526},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.42345223},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/1.9781611972801.72","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://figshare.com/articles/journal_contribution/A_Probabilistic_Framework_to_Learn_from_Multiple_Annotators_with_Time-Varying_Accuracy/6620732","pdf_url":"https://figshare.com/articles/journal_contribution/A_Probabilistic_Framework_to_Learn_from_Multiple_Annotators_with_Time-Varying_Accuracy/6620732/1/files/12117134.pdf","source":{"id":"https://openalex.org/S4306400572","display_name":"OPAL (Open@LaTrobe) (La Trobe University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I196829312","host_organization_name":"La Trobe University","host_organization_lineage":["https://openalex.org/I196829312"],"host_organization_lineage_names":["La Trobe University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://figshare.com/articles/journal_contribution/A_Probabilistic_Framework_to_Learn_from_Multiple_Annotators_with_Time-Varying_Accuracy/6620732","pdf_url":"https://figshare.com/articles/journal_contribution/A_Probabilistic_Framework_to_Learn_from_Multiple_Annotators_with_Time-Varying_Accuracy/6620732/1/files/12117134.pdf","source":{"id":"https://openalex.org/S4306400572","display_name":"OPAL (Open@LaTrobe) (La Trobe University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I196829312","host_organization_name":"La Trobe University","host_organization_lineage":["https://openalex.org/I196829312"],"host_organization_lineage_names":["La Trobe University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1513172823","https://openalex.org/W1970381522","https://openalex.org/W1973058695","https://openalex.org/W2010135967","https://openalex.org/W2082542916","https://openalex.org/W2084812512","https://openalex.org/W2119679202","https://openalex.org/W2125943921","https://openalex.org/W2137935418","https://openalex.org/W2160337655","https://openalex.org/W2537883847","https://openalex.org/W2615953416","https://openalex.org/W4248419270"],"related_works":["https://openalex.org/W4296359239","https://openalex.org/W2913146933","https://openalex.org/W2383111961","https://openalex.org/W2380820513","https://openalex.org/W2372385138","https://openalex.org/W2365952365","https://openalex.org/W2363545964","https://openalex.org/W2352448290","https://openalex.org/W2101155126","https://openalex.org/W2043093291"],"abstract_inverted_index":{"Previous":[0,252],"chapter":[1,3,253,255],"Next":[2,254],"Full":[4],"AccessProceedings":[5],"Proceedings":[6],"of":[7,54,105,121,211,219,228,234,239],"the":[8,51,79,106,112,144,153,161,193,198,208,217,226,229,236],"2010":[9],"SIAM":[10],"International":[11],"Conference":[12],"on":[13,73],"Data":[14],"Mining":[15],"(SDM)A":[16],"Probabilistic":[17],"Framework":[18],"to":[19,43,77,91,136,140,173,196,206],"Learn":[20],"from":[21,56],"Multiple":[22],"Annotators":[23],"with":[24],"Time-Varying":[25],"AccuracyPinar":[26],"Donmez,":[27,33],"Jaime":[28,34],"Carbonell,":[29,35],"and":[30,36,64,124,191,242],"Jeff":[31,37],"SchneiderPinar":[32],"Schneiderpp.826":[38],"-":[39],"837Chapter":[40],"DOI:https://doi.org/10.1137/1.9781611972801.72PDFBibTexSections":[41],"ToolsAdd":[42],"favoritesExport":[44],"CitationTrack":[45],"CitationsEmail":[46],"SectionsAboutAbstract":[47],"This":[48],"paper":[49],"addresses":[50],"challenging":[52],"problem":[53],"learning":[55,99],"multiple":[57,240],"annotators":[58,90,139,241],"whose":[59],"labeling":[60,167,183],"accuracy":[61,81,114,210],"(reliability)":[62],"differs":[63],"varies":[65],"over":[66],"time.":[67],"We":[68,101],"propose":[69],"a":[70,94,103,181],"framework":[71],"based":[72],"Sequential":[74],"Bayesian":[75],"Estimation":[76],"learn":[78],"expected":[80,113,131],"at":[82,115,143,159],"each":[83],"time":[84,117,146],"step":[85,118],"while":[86],"simultaneously":[87],"deciding":[88],"which":[89,138,185],"query":[92],"for":[93],"label":[95,163,250],"in":[96,170,216,232],"an":[97,212],"incremental":[98],"framework.":[100],"develop":[102],"variant":[104],"particle":[107],"filtering":[108],"method":[109,155,178,203,231],"that":[110,152],"estimates":[111],"every":[116],"by":[119],"sets":[120],"weighted":[122],"samples":[123],"performs":[125],"sequential":[126],"Bayes":[127],"updates.":[128],"The":[129,148,176],"estimated":[130],"accuracies":[132],"are":[133],"then":[134],"used":[135],"decide":[137],"be":[141],"queried":[142],"next":[145],"step.":[147],"empirical":[149],"analysis":[150],"shows":[151],"proposed":[154,177,230],"is":[156,204],"very":[157],"effective":[158],"predicting":[160],"true":[162,199,209],"using":[164],"only":[165],"moderate":[166],"efforts,":[168],"resulting":[169],"cleaner":[171],"labels":[172,247],"train":[174],"classifiers.":[175],"significantly":[179],"outperforms":[180],"repeated":[182],"baseline":[184],"queries":[186],"all":[187],"labelers":[188],"per":[189],"example":[190],"takes":[192],"majority":[194],"vote":[195],"predict":[197],"label.":[200],"Moreover,":[201],"our":[202],"able":[205],"track":[207],"annotator":[213],"quite":[214],"well":[215],"absence":[218],"gold":[220],"standard":[221],"labels.":[222],"These":[223],"results":[224],"demonstrate":[225],"strength":[227],"terms":[233],"estimating":[235],"time-varying":[237],"reliability":[238],"producing":[243],"cleaner,":[244],"better":[245],"quality":[246],"without":[248],"extensive":[249],"queries.":[251],"RelatedDetails":[256],"Published:2010ISBN:978-0-89871-703-7eISBN:978-1-61197-280-1":[257],"https://doi.org/10.1137/1.9781611972801Book":[258],"Series":[259],"Name:ProceedingsBook":[260],"Code:PR136Book":[261],"Pages:1-953":[262]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1541505110","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":7},{"year":2018,"cited_by_count":8},{"year":2017,"cited_by_count":7},{"year":2016,"cited_by_count":8},{"year":2015,"cited_by_count":9},{"year":2014,"cited_by_count":10},{"year":2013,"cited_by_count":13},{"year":2012,"cited_by_count":13}],"updated_date":"2025-04-23T11:28:17.566552","created_date":"2016-06-24"}