{"id":"https://openalex.org/W2059207846","doi":"https://doi.org/10.1117/12.878325","title":"Comparative performance analysis of stained histopathology specimens using RGB and multispectral imaging","display_name":"Comparative performance analysis of stained histopathology specimens using RGB and multispectral imaging","publication_year":2011,"publication_date":"2011-03-02","ids":{"openalex":"https://openalex.org/W2059207846","doi":"https://doi.org/10.1117/12.878325","mag":"2059207846"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.878325","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077619274","display_name":"Xin Qi","orcid":"https://orcid.org/0000-0003-4588-1238"},"institutions":[{"id":"https://openalex.org/I102322142","display_name":"Rutgers, The State University of New Jersey","ror":"https://ror.org/05vt9qd57","country_code":"US","type":"education","lineage":["https://openalex.org/I102322142"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xin Qi","raw_affiliation_strings":["Rutgers, The State University of New Jersey [New Brunswick]"],"affiliations":[{"raw_affiliation_string":"Rutgers, The State University of New Jersey [New Brunswick]","institution_ids":["https://openalex.org/I102322142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076917512","display_name":"Fuyong Xing","orcid":"https://orcid.org/0000-0003-0982-8675"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fuyong Xing","raw_affiliation_strings":["Department of Electrical and Computer Engineering"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089373018","display_name":"David J. Foran","orcid":"https://orcid.org/0000-0002-0090-0055"},"institutions":[{"id":"https://openalex.org/I4390039325","display_name":"Rutgers Cancer Institute of New Jersey","ror":"https://ror.org/0060x3y55","country_code":null,"type":"healthcare","lineage":["https://openalex.org/I102322142","https://openalex.org/I4390039302","https://openalex.org/I4390039325"]}],"countries":[],"is_corresponding":false,"raw_author_name":"David J. Foran","raw_affiliation_strings":["Cancer Institute of New Jersey (CINJ), Bioinformatics"],"affiliations":[{"raw_affiliation_string":"Cancer Institute of New Jersey (CINJ), Bioinformatics","institution_ids":["https://openalex.org/I4390039325"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101725246","display_name":"Lin Yang","orcid":"https://orcid.org/0000-0002-1778-2059"},"institutions":[{"id":"https://openalex.org/I102322142","display_name":"Rutgers, The State University of New Jersey","ror":"https://ror.org/05vt9qd57","country_code":"US","type":"education","lineage":["https://openalex.org/I102322142"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lin Yang","raw_affiliation_strings":["Rutgers, The State University of New Jersey [New Brunswick]"],"affiliations":[{"raw_affiliation_string":"Rutgers, The State University of New Jersey [New Brunswick]","institution_ids":["https://openalex.org/I102322142"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.901,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.907874,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":"7963","issue":null,"first_page":"79633B","last_page":"79633B"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12994","display_name":"Infrared Thermography in Medicine","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10977","display_name":"Optical Imaging and Spectroscopy Techniques","score":0.9608,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.80276704},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41207677}],"concepts":[{"id":"https://openalex.org/C173163844","wikidata":"https://www.wikidata.org/wiki/Q1761440","display_name":"Multispectral image","level":2,"score":0.8459903},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.80276704},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.79546},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6952651},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6256992},{"id":"https://openalex.org/C53533937","wikidata":"https://www.wikidata.org/wiki/Q185020","display_name":"Histogram","level":3,"score":0.57199},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5161713},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.49618202},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.43126392},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.4175927},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41207677},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.396931},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.07395753}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.878325","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.61,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388409104","https://openalex.org/W4385497869","https://openalex.org/W4318664220","https://openalex.org/W283587633","https://openalex.org/W2792279927","https://openalex.org/W2771047279","https://openalex.org/W2124951708","https://openalex.org/W2006066416","https://openalex.org/W172072032","https://openalex.org/W1544811710"],"abstract_inverted_index":{"A":[0],"performance":[1,245],"study":[2,25,156,202,224],"was":[3,26,100,126,148],"conducted":[4],"to":[5,19,102,150,184],"compare":[6],"classification":[7,32,113,165,215],"accuracy":[8,114,216],"using":[9,115,131],"both":[10],"multispectral":[11,66,82,176],"imaging":[12,17],"(MSI)":[13],"and":[14,56,68,84,144,181],"standard":[15],"bright-field":[16,238],"(RGB)":[18],"characterize":[20],"breast":[21,40,159],"tissue":[22],"microarrays.":[23],"The":[24,45,134,155],"primarily":[27],"focused":[28],"on":[29,168],"investigating":[30],"the":[31,74,105,111,116,137,152,185],"power":[33,140,166],"of":[34,107,171,175,206,236],"texton":[35,53,61,78,207],"features":[36,108,208],"for":[37,65,104,193,199],"differentiating":[38],"cancerous":[39],"TMA":[41,160],"discs":[42,161],"from":[43,80,210,220],"normal.":[44],"feature":[46,98],"extraction":[47],"algorithm":[48],"includes":[49],"two":[50,60],"main":[51],"processes:":[52],"library":[54],"training":[55,75],"histogram":[57],"construction.":[58],"First,":[59],"libraries":[62],"were":[63,87,141],"built":[64],"cubes":[67,177],"RGB":[69,85,172,186,221],"images":[70,187],"respectively,":[71],"which":[72],"comprised":[73],"process.":[76],"Second,":[77],"histograms":[79],"each":[81,94],"cube":[83],"image":[86],"used":[88,101,149],"as":[89,119,128],"testing":[90],"sets.":[91],"Finally,":[92],"within":[93],"spectral":[95],"band,":[96],"exhaustive":[97],"selection":[99],"search":[103],"combination":[106],"that":[109,162,204,227],"yielded":[110],"best":[112],"pathologic":[117],"result":[118],"a":[120,129,145],"golden":[121],"standard.":[122],"Support":[123],"vector":[124],"machine":[125],"applied":[127],"classifier":[130],"leave-one-out":[132],"cross-validation.":[133],"spectra":[135],"carrying":[136],"greatest":[138],"discriminatory":[139],"automatically":[142],"chosen":[143],"majority":[146],"vote":[147],"make":[151],"final":[153],"classification.":[154],"included":[157],"122":[158],"showed":[163,178],"poor":[164],"based":[167],"simple":[169],"visualization":[170],"images.":[173,239],"Use":[174],"improved":[179],"sensitivity":[180,189],"specificity":[182,192],"compared":[183],"(85%":[188],"&":[190,197],"85%":[191],"MSI":[194,211,228,244],"vs.":[195],"75%":[196],"65%":[198],"RGB).":[200],"This":[201,223],"demonstrates":[203],"use":[205],"derived":[209,219],"datasets":[212],"achieve":[213],"better":[214],"than":[217],"those":[218],"datasets.":[222],"further":[225],"shows":[226],"provided":[229],"statistically":[230],"significant":[231],"improvements":[232],"in":[233,246],"automated":[234],"analysis":[235],"single-stained":[237],"Future":[240],"work":[241],"will":[242],"examine":[243],"assessing":[247],"multistained":[248],"specimens.":[249]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2059207846","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-15T12:24:21.184867","created_date":"2016-06-24"}