{"id":"https://openalex.org/W2081357229","doi":"https://doi.org/10.1117/12.844216","title":"Approximations of noise structures in helical multi-detector CT scans: application to lung nodule volume estimation","display_name":"Approximations of noise structures in helical multi-detector CT scans: application to lung nodule volume estimation","publication_year":2010,"publication_date":"2010-02-18","ids":{"openalex":"https://openalex.org/W2081357229","doi":"https://doi.org/10.1117/12.844216","mag":"2081357229"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.844216","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021406539","display_name":"Rongping Zeng","orcid":"https://orcid.org/0000-0003-1849-0637"},"institutions":[{"id":"https://openalex.org/I1320320070","display_name":"United States Food and Drug Administration","ror":"https://ror.org/034xvzb47","country_code":"US","type":"government","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1320320070"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rongping Zeng","raw_affiliation_strings":["U.S. Food and Drug Administration (United States)"],"affiliations":[{"raw_affiliation_string":"U.S. Food and Drug Administration (United States)","institution_ids":["https://openalex.org/I1320320070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006593300","display_name":"Nicholas Petrick","orcid":"https://orcid.org/0000-0001-5167-8899"},"institutions":[{"id":"https://openalex.org/I1320320070","display_name":"United States Food and Drug Administration","ror":"https://ror.org/034xvzb47","country_code":"US","type":"government","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1320320070"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nicholas Petrick","raw_affiliation_strings":["U.S. Food and Drug Administration (United States)"],"affiliations":[{"raw_affiliation_string":"U.S. Food and Drug Administration (United States)","institution_ids":["https://openalex.org/I1320320070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039348485","display_name":"Marios A. Gavrielides","orcid":null},"institutions":[{"id":"https://openalex.org/I1320320070","display_name":"United States Food and Drug Administration","ror":"https://ror.org/034xvzb47","country_code":"US","type":"government","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1320320070"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marios A. Gavrielides","raw_affiliation_strings":["U.S. Food and Drug Administration (United States)"],"affiliations":[{"raw_affiliation_string":"U.S. Food and Drug Administration (United States)","institution_ids":["https://openalex.org/I1320320070"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010335705","display_name":"Kyle J. Myers","orcid":"https://orcid.org/0000-0001-7394-4932"},"institutions":[{"id":"https://openalex.org/I1320320070","display_name":"United States Food and Drug Administration","ror":"https://ror.org/034xvzb47","country_code":"US","type":"government","lineage":["https://openalex.org/I1299022934","https://openalex.org/I1320320070"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kyle J. Myers","raw_affiliation_strings":["U.S. Food and Drug Administration (United States)"],"affiliations":[{"raw_affiliation_string":"U.S. Food and Drug Administration (United States)","institution_ids":["https://openalex.org/I1320320070"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.496,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.524251,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":75},"biblio":{"volume":"7624","issue":null,"first_page":"762415","last_page":"762415"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nodule","display_name":"Nodule (geology)","score":0.4372229}],"concepts":[{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.67767966},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.57318527},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.51354885},{"id":"https://openalex.org/C2776731575","wikidata":"https://www.wikidata.org/wiki/Q2916245","display_name":"Nodule (geology)","level":2,"score":0.4372229},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.43208447},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3977095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3970504},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35029006},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.27588433},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23168772},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.844216","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377691549","https://openalex.org/W4243779904","https://openalex.org/W4205655149","https://openalex.org/W2795393339","https://openalex.org/W2366906938","https://openalex.org/W2349391998","https://openalex.org/W2102148524","https://openalex.org/W2056973590","https://openalex.org/W2000775715","https://openalex.org/W1964806738"],"abstract_inverted_index":{"We":[0,122],"have":[1],"previously":[2],"presented":[3],"a":[4,140,176,192],"match":[5],"filtered":[6],"(MF)":[7],"approach":[8,49,138],"for":[9,50,99,217],"estimating":[10],"lung":[11,218],"nodule":[12,38,57,219],"size":[13,58,220],"from":[14],"helical":[15,72],"multi-detector":[16],"CT":[17,33,39,73],"(MDCT)":[18],"images":[19,74],"[1],":[20],"in":[21,56,70,163,179,195,227],"which":[22],"we":[23],"minimized":[24],"the":[25,31,36,45,52,68,85,94,124,147,157,168,181,198,206],"sum":[26],"of":[27,47,79,93,126],"squared":[28],"differences":[29,165],"between":[30],"simulated":[32],"templates":[34],"and":[35,54,88,118,150,184,210],"actual":[37],"images.":[40],"The":[41,77,103,201],"previous":[42],"study":[43],"showed":[44],"potential":[46],"this":[48,80],"reducing":[51],"bias":[53],"variance":[55,106],"estimation.":[59],"However,":[60],"minimizing":[61],"SSD":[62],"is":[63,75,82],"not":[64],"statistically":[65],"optimal":[66],"because":[67],"noise":[69,86,97,108,129,230],"3D":[71,120,185,212],"correlated.":[76],"goal":[78],"work":[81],"to":[83,134,156],"investigate":[84],"properties":[87],"explore":[89],"several":[90],"approximate":[91],"descriptions":[92],"three-dimensional":[95],"(3D)":[96],"covariance":[98],"more":[100],"accurate":[101],"estimates.":[102],"approximations":[104,130],"include:":[105],"only,":[107],"power":[109],"spectrum":[110],"(NPS),":[111],"axial":[112,151],"correlation,":[113],"two-dimensional":[114],"(2D)":[115],"in-plane":[116,182,209],"correlation":[117],"fully":[119,186,211],"correlation.":[121],"examine":[123],"effectiveness":[125],"these":[127,229],"second-order":[128],"by":[131],"applying":[132],"them":[133],"our":[135],"volume":[136],"estimation":[137],"with":[139,160,175,190,223],"simulation":[141,202],"study.":[142],"Our":[143],"simulations":[144],"show":[145],"that:":[146],"variance-based":[148],"pre-whitening":[149,152,171,183,187],"perform":[153,188],"very":[154],"similar":[155],"non-prewhitening":[158,199],"case,":[159],"accuracy":[161],"(measured":[162],"RMSE)":[164],"within":[166],"1%;":[167],"NPS":[169],"based":[170],"performs":[172],"slightly":[173],"better,":[174],"4%":[177],"decrease":[178,194],"RMSE;":[180],"best,":[189],"about":[191],"10%":[193],"RMSE":[196],"over":[197],"case.":[200],"results":[203],"suggest":[204],"that":[205],"NPS,":[207],"2D":[208],"prewhitening":[213],"can":[214],"be":[215],"beneficial":[216],"estimation,":[221],"albeit":[222],"greater":[224],"computational":[225],"costs":[226],"determining":[228],"characterizations.":[231]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2081357229","counts_by_year":[],"updated_date":"2025-03-16T02:49:08.568129","created_date":"2016-06-24"}