{"id":"https://openalex.org/W1988271714","doi":"https://doi.org/10.1117/12.593837","title":"Coronary vessel cores from 3D imagery: a topological approach","display_name":"Coronary vessel cores from 3D imagery: a topological approach","publication_year":2005,"publication_date":"2005-04-29","ids":{"openalex":"https://openalex.org/W1988271714","doi":"https://doi.org/10.1117/12.593837","mag":"1988271714"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.593837","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://repository.gatech.edu/bitstreams/d50bde18-6812-4381-86c0-0da945c2b3b2/download","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111760033","display_name":"Andrzej Szymczak","orcid":null},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andrzej Szymczak","raw_affiliation_strings":["Georgia Institute of Technology, United States#TAB#"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, United States#TAB#","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111858265","display_name":"Allen Tannenbaum","orcid":null},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Allen Tannenbaum","raw_affiliation_strings":["Georgia Institute of Technology, United States#TAB#"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, United States#TAB#","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049298090","display_name":"Konstantin Mischaikow","orcid":"https://orcid.org/0000-0003-2876-4558"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Konstantin Mischaikow","raw_affiliation_strings":["Georgia Institute of Technology, United States#TAB#"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, United States#TAB#","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.664,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.730956,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":"5747","issue":null,"first_page":"505","last_page":"505"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maxima","display_name":"Maxima","score":0.7965698},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5637115},{"id":"https://openalex.org/keywords/maxima-and-minima","display_name":"Maxima and minima","score":0.5495403},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.54379797},{"id":"https://openalex.org/keywords/intensity","display_name":"Intensity","score":0.44258428}],"concepts":[{"id":"https://openalex.org/C91528185","wikidata":"https://www.wikidata.org/wiki/Q520952","display_name":"Maxima","level":3,"score":0.7965698},{"id":"https://openalex.org/C78201319","wikidata":"https://www.wikidata.org/wiki/Q685727","display_name":"Grayscale","level":3,"score":0.5900188},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5637115},{"id":"https://openalex.org/C186633575","wikidata":"https://www.wikidata.org/wiki/Q845060","display_name":"Maxima and minima","level":2,"score":0.5495403},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.54379797},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.5205401},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.457327},{"id":"https://openalex.org/C185568154","wikidata":"https://www.wikidata.org/wiki/Q530242","display_name":"Mathematical morphology","level":4,"score":0.4545807},{"id":"https://openalex.org/C93038891","wikidata":"https://www.wikidata.org/wiki/Q1061524","display_name":"Intensity (physics)","level":2,"score":0.44258428},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.42352533},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42136067},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4179998},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3529278},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34838617},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.2683145},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.21410897},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.21377426},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.19447279},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.19268873},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.15835842},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C554144382","wikidata":"https://www.wikidata.org/wiki/Q213156","display_name":"Performance art","level":2,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C52119013","wikidata":"https://www.wikidata.org/wiki/Q50637","display_name":"Art history","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.593837","pdf_url":null,"source":{"id":"https://openalex.org/S183492911","display_name":"Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE","issn_l":"0277-786X","issn":["0277-786X","1996-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/1853/8346","pdf_url":"http://repository.gatech.edu/bitstreams/d50bde18-6812-4381-86c0-0da945c2b3b2/download","source":{"id":"https://openalex.org/S4377196313","display_name":"SMARTech Repository (Georgia Institute of Technology)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130701444","host_organization_name":"Georgia Institute of Technology","host_organization_lineage":["https://openalex.org/I130701444"],"host_organization_lineage_names":["Georgia Institute of Technology"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://hdl.handle.net/1853/8346","pdf_url":"http://repository.gatech.edu/bitstreams/d50bde18-6812-4381-86c0-0da945c2b3b2/download","source":{"id":"https://openalex.org/S4377196313","display_name":"SMARTech Repository (Georgia Institute of Technology)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130701444","host_organization_name":"Georgia Institute of Technology","host_organization_lineage":["https://openalex.org/I130701444"],"host_organization_lineage_names":["Georgia Institute of Technology"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Life on land","score":0.47,"id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1238092070","https://openalex.org/W1485207478","https://openalex.org/W1491528139","https://openalex.org/W1584481253","https://openalex.org/W1586370810","https://openalex.org/W1974954013","https://openalex.org/W1987579928","https://openalex.org/W2017709497","https://openalex.org/W2022478295","https://openalex.org/W2032238293","https://openalex.org/W2069743368","https://openalex.org/W2073028210","https://openalex.org/W2076523440","https://openalex.org/W2094190943","https://openalex.org/W2099290282","https://openalex.org/W2101217924","https://openalex.org/W2101632303","https://openalex.org/W2103606786","https://openalex.org/W2104095591","https://openalex.org/W2104355613","https://openalex.org/W2111298982","https://openalex.org/W2119981628","https://openalex.org/W2126261479","https://openalex.org/W2128839247","https://openalex.org/W2129534965","https://openalex.org/W2139239284","https://openalex.org/W2153504150","https://openalex.org/W2158932988","https://openalex.org/W2161457923","https://openalex.org/W2200955931","https://openalex.org/W2552440121","https://openalex.org/W2752885492","https://openalex.org/W2998023265"],"related_works":["https://openalex.org/W4232457976","https://openalex.org/W3105193347","https://openalex.org/W2797691919","https://openalex.org/W2350245891","https://openalex.org/W2160559052","https://openalex.org/W2156081102","https://openalex.org/W2050191802","https://openalex.org/W1973781123","https://openalex.org/W1835819466","https://openalex.org/W181473267"],"abstract_inverted_index":{"We":[0,84,126,221],"propose":[1],"a":[2,53,58,87,102,193,265],"simple":[3,129],"method":[4],"for":[5,268],"reconstructing":[6],"thin,":[7],"low-contrast":[8],"blood":[9,45,124,178,194,214,224,248,275,295],"vessels":[10,296],"from":[11,147,188,212,287,300],"three-dimensional":[12],"greyscale":[13],"images.":[14],"Our":[15],"algorithm":[16],"first":[17,142],"extracts":[18],"persistent":[19,93],"maxima":[20,34,74,94],"of":[21,55,57,65,98,106,109,115,122,175,190,204,232,270,294],"the":[22,30,66,72,81,92,107,110,113,120,123,133,148,158,176,181,199,202,219,223,229,233,242,247,301],"intensity":[23,40],"on":[24,91,169,255],"all":[25],"axis-aligned":[26],"two-dimensional":[27],"slices":[28],"through":[29],"input":[31,82],"volume.":[32,83],"Those":[33],"tend":[35],"to":[36,63,69,76,132,137,172,180,251,283],"concentrate":[37],"along":[38,44,192],"one-dimensional":[39],"ridges,":[41],"in":[42,80,135,239],"particular":[43],"vessels.":[46,125,276],"Persistence":[47],"(which":[48],"can":[49,263,297],"be":[50,173,264,298],"viewed":[51],"as":[52],"measure":[54],"robustness":[56],"local":[59],"maximum":[60],"with":[61],"respect":[62],"perturbations":[64],"data)":[67],"allows":[68],"filter":[70,143,153],"out":[71,217],"`unimportant'":[73],"due":[75],"noise":[77],"or":[78],"inaccuracy":[79],"then":[85],"build":[86],"minimum":[88],"forest":[89,117,134],"based":[90],"that":[95,164,228,260],"uses":[96],"edges":[97],"length":[99,160],"smaller":[100],"than":[101,157],"certain":[103],"threshold.":[104],"Because":[105],"distribution":[108],"robust":[111],"maxima,":[112],"structure":[114,121,235],"this":[116],"already":[118],"reflects":[119],"apply":[127],"three":[128],"geometric":[130,170],"filters":[131],"order":[136],"improve":[138],"its":[139,209],"quality.":[140],"The":[141,151],"removes":[144],"short":[145],"branches":[146],"forest's":[149],"trees.":[150],"second":[152],"adds":[154],"edges,":[155],"longer":[156],"edge":[159],"threshold":[161],"used":[162],"earlier,":[163],"join":[165],"what":[166],"appears":[167],"(based":[168],"criteria)":[171],"pieces":[174,185],"same":[177],"vessel":[179],"forest.":[182],"Such":[183],"disconnected":[184],"often":[186],"result":[187],"non-uniformity":[189],"contrast":[191,274],"vessel.":[195],"Finally,":[196],"we":[197,279],"let":[198],"user":[200],"select":[201],"tree":[203,230],"interest":[205],"by":[206,305],"clicking":[207],"near":[208],"root":[210],"(point":[211],"which":[213],"would":[215,245],"flow":[216,225,249],"into":[218],"tree).":[220],"compute":[222],"direction":[226,250],"assuming":[227],"is":[231],"correct":[234],"and":[236,272],"cut":[237],"it":[238,282],"places":[240],"where":[241],"vessel's":[243],"geometry":[244],"force":[246],"change":[252],"abruptly.":[253],"Experiments":[254],"clinical":[256],"CT":[257,289],"scans":[258],"show":[259],"our":[261],"technique":[262],"useful":[266],"tool":[267],"segmentation":[269],"thin":[271],"low":[273],"In":[277],"particular,":[278],"successfully":[280],"applied":[281],"extract":[284],"coronary":[285],"arteries":[286],"heart":[288],"scans.":[290],"Volumetric":[291],"3D":[292],"models":[293],"obtained":[299],"graph":[302],"described":[303],"above":[304],"adaptive":[306],"thresholding.":[307]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1988271714","counts_by_year":[{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2012,"cited_by_count":2}],"updated_date":"2025-01-15T22:17:27.582532","created_date":"2016-06-24"}