{"id":"https://openalex.org/W2922178254","doi":"https://doi.org/10.1117/12.2512655","title":"Developing a new quantitative imaging marker to predict pathological complete response to neoadjuvant chemotherapy","display_name":"Developing a new quantitative imaging marker to predict pathological complete response to neoadjuvant chemotherapy","publication_year":2019,"publication_date":"2019-03-13","ids":{"openalex":"https://openalex.org/W2922178254","doi":"https://doi.org/10.1117/12.2512655","mag":"2922178254"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2512655","pdf_url":null,"source":{"id":"https://openalex.org/S4306519508","display_name":"Medical Imaging 2018: Computer-Aided Diagnosis","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035793315","display_name":"Faranak Aghaei","orcid":null},"institutions":[{"id":"https://openalex.org/I8692664","display_name":"University of Oklahoma","ror":"https://ror.org/02aqsxs83","country_code":"US","type":"funder","lineage":["https://openalex.org/I8692664"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Faranak Aghaei","raw_affiliation_strings":["The Univ. of Oklahoma (United States)"],"affiliations":[{"raw_affiliation_string":"The Univ. of Oklahoma (United States)","institution_ids":["https://openalex.org/I8692664"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015073323","display_name":"Alan B. Hollingsworth","orcid":"https://orcid.org/0000-0002-7856-6798"},"institutions":[{"id":"https://openalex.org/I4210165260","display_name":"Mercy Health","ror":"https://ror.org/054bs2v13","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210165260"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alan B. Hollingsworth","raw_affiliation_strings":["Mercy Health Ctr. (United States)"],"affiliations":[{"raw_affiliation_string":"Mercy Health Ctr. (United States)","institution_ids":["https://openalex.org/I4210165260"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003646582","display_name":"Seyedehnafiseh Mirniaharikandehei","orcid":"https://orcid.org/0000-0002-1070-4517"},"institutions":[{"id":"https://openalex.org/I8692664","display_name":"University of Oklahoma","ror":"https://ror.org/02aqsxs83","country_code":"US","type":"funder","lineage":["https://openalex.org/I8692664"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Seyedeh-Nafiseh Mirnia-harikandehei","raw_affiliation_strings":["The Univ. of Oklahoma (United States)"],"affiliations":[{"raw_affiliation_string":"The Univ. of Oklahoma (United States)","institution_ids":["https://openalex.org/I8692664"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101572876","display_name":"Yunzhi Wang","orcid":"https://orcid.org/0000-0001-9033-3156"},"institutions":[{"id":"https://openalex.org/I8692664","display_name":"University of Oklahoma","ror":"https://ror.org/02aqsxs83","country_code":"US","type":"funder","lineage":["https://openalex.org/I8692664"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yunzhi Wang","raw_affiliation_strings":["The Univ. of Oklahoma (United States)"],"affiliations":[{"raw_affiliation_string":"The Univ. of Oklahoma (United States)","institution_ids":["https://openalex.org/I8692664"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100410286","display_name":"Hong Liu","orcid":"https://orcid.org/0000-0002-0896-8409"},"institutions":[{"id":"https://openalex.org/I8692664","display_name":"University of Oklahoma","ror":"https://ror.org/02aqsxs83","country_code":"US","type":"funder","lineage":["https://openalex.org/I8692664"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hong Liu","raw_affiliation_strings":["The Univ. of Oklahoma (United States)"],"affiliations":[{"raw_affiliation_string":"The Univ. of Oklahoma (United States)","institution_ids":["https://openalex.org/I8692664"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045998635","display_name":"Bin Zheng","orcid":"https://orcid.org/0000-0002-7682-6648"},"institutions":[{"id":"https://openalex.org/I8692664","display_name":"University of Oklahoma","ror":"https://ror.org/02aqsxs83","country_code":"US","type":"funder","lineage":["https://openalex.org/I8692664"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bin Zheng","raw_affiliation_strings":["The Univ. of Oklahoma (United States)"],"affiliations":[{"raw_affiliation_string":"The Univ. of Oklahoma (United States)","institution_ids":["https://openalex.org/I8692664"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.172,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.482087,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"96","last_page":"96"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11885","display_name":"MRI in cancer diagnosis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11885","display_name":"MRI in cancer diagnosis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/neoadjuvant-therapy","display_name":"Neoadjuvant Therapy","score":0.47672716}],"concepts":[{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.7643236},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.6192125},{"id":"https://openalex.org/C2776694085","wikidata":"https://www.wikidata.org/wiki/Q974135","display_name":"Chemotherapy","level":2,"score":0.57012707},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.48717898},{"id":"https://openalex.org/C2778292576","wikidata":"https://www.wikidata.org/wiki/Q6991934","display_name":"Neoadjuvant therapy","level":4,"score":0.47672716},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4053499},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.40229145},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.3883267},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.38511065},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.34540904},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.18719494},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.17418489}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/12.2512655","pdf_url":null,"source":{"id":"https://openalex.org/S4306519508","display_name":"Medical Imaging 2018: Computer-Aided Diagnosis","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.79,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1924550322","https://openalex.org/W1967076728","https://openalex.org/W2019607817","https://openalex.org/W2075894019","https://openalex.org/W2079019493","https://openalex.org/W2118804515","https://openalex.org/W2220907510","https://openalex.org/W2285090712","https://openalex.org/W2339824777","https://openalex.org/W2567354201","https://openalex.org/W2585697071","https://openalex.org/W2775577467","https://openalex.org/W2800539391","https://openalex.org/W2801188218","https://openalex.org/W2801405956","https://openalex.org/W2884184398","https://openalex.org/W2885317179","https://openalex.org/W4301689241"],"related_works":["https://openalex.org/W4385649027","https://openalex.org/W4303685026","https://openalex.org/W3187081201","https://openalex.org/W2970784617","https://openalex.org/W2474554762","https://openalex.org/W2217963778","https://openalex.org/W2129882004","https://openalex.org/W2126639667","https://openalex.org/W1995646291","https://openalex.org/W1980276147"],"abstract_inverted_index":{"Neoadjuvant":[0],"(NAT)":[1],"chemotherapy":[2,83,236],"is":[3,34,48],"a":[4,53,127,158,185],"standard":[5],"treatment":[6],"option":[7],"for":[8,39],"many":[9],"breast":[10,40,73,92,123,138,229],"cancer":[11,41,93],"patients.":[12],"Patients":[13],"who":[14],"achieved":[15,106],"pathologic":[16,32],"complete":[17,244],"response":[18,33],"(pCR)":[19],"after":[20,81,113,233],"NAT,":[21],"usually":[22],"have":[23,237],"better":[24],"prognosis":[25],"than":[26],"those":[27],"without.":[28],"Thus,":[29],"prediction":[30,241],"of":[31,45,90,129,174,210,214,242],"an":[35],"important":[36],"clinical":[37],"issue":[38],"patient.":[42],"The":[43,88,190],"purpose":[44],"this":[46],"study":[47,222],"to":[49,84,121,147,169,217],"develop":[50],"and":[51,58,66,80,108,125,132,176,182,212],"analyze":[52],"new":[54],"computer-aided":[55],"detection":[56],"(CAD)":[57],"machine":[59,163],"learning":[60],"scheme":[61,118],"using":[62,184,194,218],"the":[63,86,100,114,136,153,171,198,201,234],"quantitative":[64],"kinetic":[65,131],"texture":[67,133],"based":[68,165],"image":[69,141,225],"features":[70,134,151,195,226],"extracted":[71,196,227],"from":[72,135,152,197,228],"magnetic":[74],"resonance":[75],"imaging":[76],"(MRI)":[77],"performed":[78],"before":[79],"NAT":[82,96,235],"predict":[85],"pCR.":[87],"images":[89,231],"153":[91],"patients":[94],"underwent":[95],"were":[97,111,180],"included":[98],"in":[99,240],"analytical":[101],"dataset.":[102],"Among":[103],"them,":[104],"52":[105],"pCR":[107,175],"101":[109],"cases":[110],"non-pCR":[112,177],"NAT.":[115],"A":[116],"CAD":[117],"was":[119,145,167],"developed":[120],"segment":[122],"region":[124],"compute":[126],"total":[128],"38":[130],"segmented":[137],"regions.":[139],"An":[140],"feature":[142,155],"reduction":[143],"method":[144],"used":[146,168],"identify":[148],"8":[149],"optimal":[150],"original":[154],"pool.":[156],"Then,":[157],"fine":[159],"Gaussian":[160],"support":[161],"vector":[162],"(FGSVM)":[164],"classifier":[166],"classify":[170],"two":[172],"categories":[173],"cases,":[178],"which":[179],"optimized":[181],"tested":[183],"ten-fold":[186],"cross":[187],"validation":[188],"method.":[189],"results":[191],"indicated":[192],"that":[193,224],"post-chemotherapy":[199],"yielded":[200],"higher":[202],"area":[203],"under":[204],"receiver":[205],"operating":[206],"characteristic":[207],"curves":[208],"(AUC)":[209],"0.81\u00b10.04":[211],"accuracy":[213],"82%":[215],"compared":[216],"pre-chemotherapy":[219],"images.":[220],"This":[221],"demonstrated":[223],"MR":[230],"acquired":[232],"good":[238],"potential":[239],"pathology":[243],"response.":[245]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2922178254","counts_by_year":[{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-20T01:43:26.140591","created_date":"2019-03-22"}