{"id":"https://openalex.org/W2806678397","doi":"https://doi.org/10.1117/1.jei.27.3.033032","title":"Multiorientation scene text detection via coarse-to-fine supervision-based convolutional networks","display_name":"Multiorientation scene text detection via coarse-to-fine supervision-based convolutional networks","publication_year":2018,"publication_date":"2018-06-07","ids":{"openalex":"https://openalex.org/W2806678397","doi":"https://doi.org/10.1117/1.jei.27.3.033032","mag":"2806678397"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/1.jei.27.3.033032","pdf_url":null,"source":{"id":"https://openalex.org/S158511090","display_name":"Journal of Electronic Imaging","issn_l":"1017-9909","issn":["1017-9909","1560-229X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015493248","display_name":"Xihan Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"funder","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xihan Wang","raw_affiliation_strings":["Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an"],"affiliations":[{"raw_affiliation_string":"Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101410445","display_name":"Zhaoqiang Xia","orcid":"https://orcid.org/0000-0003-0630-3339"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"funder","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaoqiang Xia","raw_affiliation_strings":["Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an"],"affiliations":[{"raw_affiliation_string":"Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110371318","display_name":"Jinye Peng","orcid":null},"institutions":[{"id":"https://openalex.org/I36819085","display_name":"Northwest University","ror":"https://ror.org/00y7snj24","country_code":"US","type":"education","lineage":["https://openalex.org/I36819085"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jinye Peng","raw_affiliation_strings":["Northwest University, School of Information Science and Technology, Kirkland, Washington"],"affiliations":[{"raw_affiliation_string":"Northwest University, School of Information Science and Technology, Kirkland, Washington","institution_ids":["https://openalex.org/I36819085"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101536090","display_name":"Xiaoyi Feng","orcid":"https://orcid.org/0000-0002-0428-6224"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"funder","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyi Feng","raw_affiliation_strings":["Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an"],"affiliations":[{"raw_affiliation_string":"Northwestern Polytechnical University, School of Electronics and Information, Xi\u2019an","institution_ids":["https://openalex.org/I17145004"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.483,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.641746,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":"27","issue":"03","first_page":"1","last_page":"1"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/text-detection","display_name":"Text Detection","score":0.59794563},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.51245886},{"id":"https://openalex.org/keywords/limiting","display_name":"Limiting","score":0.47843316},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4588405}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8410225},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6985428},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.6725682},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.60176957},{"id":"https://openalex.org/C2983589003","wikidata":"https://www.wikidata.org/wiki/Q167555","display_name":"Text detection","level":3,"score":0.59794563},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.56364304},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.56330526},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.51245886},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4994843},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4891191},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48364675},{"id":"https://openalex.org/C188198153","wikidata":"https://www.wikidata.org/wiki/Q1613840","display_name":"Limiting","level":2,"score":0.47843316},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4588405},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2810829},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16674009},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1117/1.jei.27.3.033032","pdf_url":null,"source":{"id":"https://openalex.org/S158511090","display_name":"Journal of Electronic Imaging","issn_l":"1017-9909","issn":["1017-9909","1560-229X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315543","host_organization_name":"SPIE","host_organization_lineage":["https://openalex.org/P4310315543"],"host_organization_lineage_names":["SPIE"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.46,"id":"https://metadata.un.org/sdg/11"},{"display_name":"Quality education","score":0.4,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":56,"referenced_works":["https://openalex.org/W101496726","https://openalex.org/W117491841","https://openalex.org/W1488125194","https://openalex.org/W1536680647","https://openalex.org/W1922126009","https://openalex.org/W1935817682","https://openalex.org/W1972065312","https://openalex.org/W1988461287","https://openalex.org/W1995052126","https://openalex.org/W2008806374","https://openalex.org/W2013360608","https://openalex.org/W2015787694","https://openalex.org/W2019478948","https://openalex.org/W2022980325","https://openalex.org/W2042536265","https://openalex.org/W2056435187","https://openalex.org/W2056518953","https://openalex.org/W2060560731","https://openalex.org/W2061802763","https://openalex.org/W2065613686","https://openalex.org/W2076014259","https://openalex.org/W2078997308","https://openalex.org/W2102605133","https://openalex.org/W2124404372","https://openalex.org/W2128854450","https://openalex.org/W2131673214","https://openalex.org/W2135231474","https://openalex.org/W2137718414","https://openalex.org/W2142159465","https://openalex.org/W2148214126","https://openalex.org/W2148819429","https://openalex.org/W2150259535","https://openalex.org/W2161969291","https://openalex.org/W2163876554","https://openalex.org/W2168894214","https://openalex.org/W2194775991","https://openalex.org/W2217433794","https://openalex.org/W2339589954","https://openalex.org/W2343052201","https://openalex.org/W2395360388","https://openalex.org/W2395611524","https://openalex.org/W2508741746","https://openalex.org/W2519818067","https://openalex.org/W2533962510","https://openalex.org/W2565639579","https://openalex.org/W2574887079","https://openalex.org/W2597311742","https://openalex.org/W2604300598","https://openalex.org/W2605076167","https://openalex.org/W2963544187","https://openalex.org/W3106250896","https://openalex.org/W4239147634","https://openalex.org/W639708223","https://openalex.org/W70975097","https://openalex.org/W776682613","https://openalex.org/W845365781"],"related_works":["https://openalex.org/W3125011624","https://openalex.org/W3114556517","https://openalex.org/W3011293149","https://openalex.org/W2979236518","https://openalex.org/W2952760143","https://openalex.org/W2605076167","https://openalex.org/W2370917603","https://openalex.org/W2347897961","https://openalex.org/W2017776670","https://openalex.org/W1508631387"],"abstract_inverted_index":{"Text":[0],"detection":[1,40],"in":[2,19,60,88,127],"natural":[3],"scenes":[4],"has":[5],"long":[6],"been":[7,17],"an":[8],"open":[9],"challenge":[10],"and":[11,70,82,92,113,130,139],"a":[12,44,89],"lot":[13],"of":[14,31,150],"approaches":[15],"have":[16,25],"presented,":[18],"which":[20],"the":[21,39,78,93,121,148,162],"deep":[22,45],"learning-based":[23],"methods":[24],"achieved":[26],"state-of-the-art":[27,163],"performance.":[28,164],"However,":[29],"most":[30],"them":[32],"merely":[33],"use":[34],"coarse-level":[35],"supervision":[36],"information,":[37],"limiting":[38],"effectiveness.":[41],"We":[42],"propose":[43],"method":[46,123,160],"utilizing":[47],"coarse-to-fine":[48,56],"supervisions":[49,57],"for":[50],"multiorientation":[51],"scene":[52],"text":[53,64,67,110,142],"detection.":[54],"The":[55,154],"are":[58,86,97,144],"generated":[59],"three":[61],"levels:":[62],"coarse":[63,117],"region":[65],"(TR),":[66],"central":[68],"line,":[69],"fine":[71],"character":[72],"shape.":[73],"With":[74],"these":[75],"multiple":[76,128],"supervisions,":[77],"multiscale":[79],"feature":[80],"pyramids":[81],"deeply":[83],"supervised":[84],"nets":[85],"integrated":[87],"unified":[90],"architecture,":[91],"corresponding":[94],"convolutional":[95],"kernels":[96],"learned":[98],"jointly.":[99],"An":[100],"effective":[101],"top-down":[102],"pipeline":[103],"is":[104],"developed":[105],"to":[106,146],"obtain":[107],"more":[108],"precise":[109],"segmentation":[111],"regions":[112],"their":[114],"relationship":[115],"from":[116],"TR.":[118],"In":[119],"addition,":[120],"proposed":[122,152],"can":[124],"handle":[125],"texts":[126],"orientations":[129],"languages.":[131],"Four":[132],"public":[133],"datasets,":[134],"i.e.,":[135],"ICDAR2013,":[136],"MSRA-TD500,":[137],"USTB,":[138],"street":[140],"view":[141],"dataset,":[143],"used":[145],"evaluate":[147],"performance":[149],"our":[151,159],"method.":[153],"experimental":[155],"results":[156],"show":[157],"that":[158],"achieves":[161]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2806678397","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":3}],"updated_date":"2025-02-23T00:35:28.332635","created_date":"2018-06-13"}