{"id":"https://openalex.org/W4312116378","doi":"https://doi.org/10.1115/1.4056567","title":"Partitioned Active Learning for Heterogeneous Systems","display_name":"Partitioned Active Learning for Heterogeneous Systems","publication_year":2022,"publication_date":"2022-12-23","ids":{"openalex":"https://openalex.org/W4312116378","doi":"https://doi.org/10.1115/1.4056567"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1115/1.4056567","pdf_url":null,"source":{"id":"https://openalex.org/S173178594","display_name":"Journal of Computing and Information Science in Engineering","issn_l":"1530-9827","issn":["1530-9827","1944-7078"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310316053","host_organization_name":"ASM International","host_organization_lineage":["https://openalex.org/P4310316053"],"host_organization_lineage_names":["ASM International"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2105.08547","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072169453","display_name":"Cheolhei Lee","orcid":"https://orcid.org/0000-0002-4145-6560"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cheolhei Lee","raw_affiliation_strings":["Virginia Tech Grado Department of Industrial and Systems Engineering, , Blacksburg, VA 24061"],"affiliations":[{"raw_affiliation_string":"Virginia Tech Grado Department of Industrial and Systems Engineering, , Blacksburg, VA 24061","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100722761","display_name":"Kaiwen Wang","orcid":"https://orcid.org/0000-0003-4765-8726"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kaiwen Wang","raw_affiliation_strings":["Virginia Tech Department of Materials Science and Engineering, , Blacksburg, VA 24061"],"affiliations":[{"raw_affiliation_string":"Virginia Tech Department of Materials Science and Engineering, , Blacksburg, VA 24061","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102924841","display_name":"Jianguo Wu","orcid":"https://orcid.org/0000-0002-2885-8725"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianguo Wu","raw_affiliation_strings":["Peking University Department of Industrial Engineering and Management, , Beijing 100080 , China"],"affiliations":[{"raw_affiliation_string":"Peking University Department of Industrial Engineering and Management, , Beijing 100080 , China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012268558","display_name":"Wenjun Cai","orcid":"https://orcid.org/0000-0002-9457-8705"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenjun Cai","raw_affiliation_strings":["Virginia Tech Department of Materials Science and Engineering, , Blacksburg, VA 24061"],"affiliations":[{"raw_affiliation_string":"Virginia Tech Department of Materials Science and Engineering, , Blacksburg, VA 24061","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018763939","display_name":"Xiaowei Yue","orcid":"https://orcid.org/0000-0001-6019-0940"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaowei Yue","raw_affiliation_strings":["Virginia Tech Grado Department of Industrial and Systems Engineering, , Blacksburg, VA 24061"],"affiliations":[{"raw_affiliation_string":"Virginia Tech Grado Department of Industrial and Systems Engineering, , Blacksburg, VA 24061","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.867,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.694314,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"23","issue":"4","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/active-learning","display_name":"Active Learning","score":0.635929},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.550958},{"id":"https://openalex.org/keywords/surrogate-modeling","display_name":"Surrogate Modeling","score":0.52585},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.516109}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7376064},{"id":"https://openalex.org/C77967617","wikidata":"https://www.wikidata.org/wiki/Q4677561","display_name":"Active learning (machine learning)","level":2,"score":0.7103362},{"id":"https://openalex.org/C34727166","wikidata":"https://www.wikidata.org/wiki/Q515375","display_name":"Cholesky decomposition","level":3,"score":0.60547924},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5861264},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49159202},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4605744},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.45411137},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.44484738},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4293331},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33169073},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.3091624},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.20329481},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10592067},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1115/1.4056567","pdf_url":null,"source":{"id":"https://openalex.org/S173178594","display_name":"Journal of Computing and Information Science in Engineering","issn_l":"1530-9827","issn":["1530-9827","1944-7078"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310316053","host_organization_name":"ASM International","host_organization_lineage":["https://openalex.org/P4310316053"],"host_organization_lineage_names":["ASM International"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2105.08547","pdf_url":"http://arxiv.org/pdf/2105.08547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10919/113698","pdf_url":"https://vtechworks.lib.vt.edu/bitstreams/4a117754-ca1e-4878-b10d-9d91db4d7791/download","source":{"id":"https://openalex.org/S4306400248","display_name":"VTechWorks (Virginia Tech)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I859038795","host_organization_name":"Virginia Tech","host_organization_lineage":["https://openalex.org/I859038795"],"host_organization_lineage_names":["Virginia Tech"],"type":"repository"},"license":"mit","license_id":"https://openalex.org/licenses/mit","version":"acceptedVersion","is_accepted":true,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2105.08547","pdf_url":"http://arxiv.org/pdf/2105.08547","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.57}],"grants":[{"funder":"https://openalex.org/F4320332184","funder_display_name":"National Academy of Sciences","award_id":"Grainger Frontiers of Engineering Grant Award"},{"funder":"https://openalex.org/F4320337391","funder_display_name":"Division of Civil, Mechanical and Manufacturing Innovation","award_id":"2035038"},{"funder":"https://openalex.org/F4320337391","funder_display_name":"Division of Civil, Mechanical and Manufacturing Innovation","award_id":"1855651"}],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1591699755","https://openalex.org/W2018705428","https://openalex.org/W2051688983","https://openalex.org/W2067191022","https://openalex.org/W2080006911","https://openalex.org/W2081484912","https://openalex.org/W2092271904","https://openalex.org/W2098949458","https://openalex.org/W2132001627","https://openalex.org/W2135393913","https://openalex.org/W2196562095","https://openalex.org/W2493051178","https://openalex.org/W2510190756","https://openalex.org/W2592279581","https://openalex.org/W2599820605","https://openalex.org/W2607746587","https://openalex.org/W2729558485","https://openalex.org/W2789089732","https://openalex.org/W2886013923","https://openalex.org/W2893554686","https://openalex.org/W2990394323","https://openalex.org/W3004925702","https://openalex.org/W3009871516","https://openalex.org/W3025831204","https://openalex.org/W3095412187","https://openalex.org/W3114409706","https://openalex.org/W3126793309","https://openalex.org/W3139351251","https://openalex.org/W3203712100","https://openalex.org/W4211049957","https://openalex.org/W4237236652","https://openalex.org/W4248762835","https://openalex.org/W4299604521","https://openalex.org/W4312540784","https://openalex.org/W561812429"],"related_works":["https://openalex.org/W2966537581","https://openalex.org/W2403987929","https://openalex.org/W2374847384","https://openalex.org/W2356488190","https://openalex.org/W2169866437","https://openalex.org/W2107649022","https://openalex.org/W2079508979","https://openalex.org/W2063512590","https://openalex.org/W2039814159","https://openalex.org/W1964286703"],"abstract_inverted_index":{"Abstract":[0],"Active":[1,20],"learning":[2,8,52,123,137],"is":[3],"a":[4],"subfield":[5],"of":[6,27,34,56],"machine":[7],"that":[9,53],"focuses":[10],"on":[11,73],"improving":[12],"the":[13,32,42,49,69,79,95,100,108,126],"data":[14],"collection":[15],"efficiency":[16],"in":[17,36,63,139],"expensive-to-evaluate":[18],"systems.":[19,64],"learning-applied":[21],"surrogate":[22],"modeling":[23],"facilitates":[24],"cost-efficient":[25],"analysis":[26],"demanding":[28],"engineering":[29],"systems,":[30],"while":[31],"existence":[33],"heterogeneity":[35,62],"underlying":[37],"systems":[38],"may":[39],"adversely":[40],"affect":[41],"performance.":[43],"In":[44],"this":[45],"article,":[46],"we":[47],"propose":[48,115],"partitioned":[50],"active":[51,122,136],"quantifies":[54],"informativeness":[55],"new":[57],"design":[58,70,81],"points":[59],"by":[60,93,107],"circumventing":[61],"The":[65,87,130],"proposed":[66,131],"method":[67,132],"partitions":[68],"space":[71],"based":[72],"heterogeneous":[74],"features":[75],"and":[76,99,146],"searches":[77],"for":[78,120],"next":[80],"point":[82],"with":[83,143],"two":[84],"systematic":[85],"steps.":[86],"global":[88],"searching":[89,102],"scheme":[90],"accelerates":[91],"exploration":[92],"identifying":[94],"most":[96],"uncertain":[97],"subregion,":[98],"local":[101,109],"utilizes":[103],"circumscribed":[104],"information":[105],"induced":[106],"Gaussian":[110],"process":[111],"(GP).":[112],"We":[113],"also":[114],"Cholesky":[116],"update-driven":[117],"numerical":[118],"remedies":[119],"our":[121],"to":[124],"address":[125],"computational":[127],"complexity":[128],"challenge.":[129],"consistently":[133],"outperforms":[134],"existing":[135],"methods":[138],"three":[140],"real-world":[141],"cases":[142],"better":[144],"prediction":[145],"computation":[147],"time.":[148]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312116378","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-05T10:51:00.658531","created_date":"2023-01-04"}