{"id":"https://openalex.org/W4392291935","doi":"https://doi.org/10.1111/mice.13179","title":"A traffic state prediction method based on spatial\u2013temporal data mining of floating car data by using autoformer architecture","display_name":"A traffic state prediction method based on spatial\u2013temporal data mining of floating car data by using autoformer architecture","publication_year":2024,"publication_date":"2024-02-28","ids":{"openalex":"https://openalex.org/W4392291935","doi":"https://doi.org/10.1111/mice.13179"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1111/mice.13179","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13179","source":{"id":"https://openalex.org/S206927758","display_name":"Computer-Aided Civil and Infrastructure Engineering","issn_l":"1093-9687","issn":["1093-9687","1467-8667"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13179","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073007461","display_name":"Shuangzhi Yu","orcid":null},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuangzhi Yu","raw_affiliation_strings":["School of Transportation, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079942913","display_name":"Jiankun Peng","orcid":"https://orcid.org/0000-0003-1444-9741"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Jiankun Peng","raw_affiliation_strings":["School of Transportation, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053201231","display_name":"Yuming Ge","orcid":"https://orcid.org/0000-0001-5579-802X"},"institutions":[{"id":"https://openalex.org/I4210130112","display_name":"China Academy of Information and Communications Technology","ror":"https://ror.org/038dte259","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210130112","https://openalex.org/I890469752"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuming Ge","raw_affiliation_strings":["Institute of Technology and Standards, China Academy of Information and Communications Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Technology and Standards, China Academy of Information and Communications Technology, Beijing, China","institution_ids":["https://openalex.org/I4210130112"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011986626","display_name":"Xinlian Yu","orcid":"https://orcid.org/0000-0001-8418-4377"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinlian Yu","raw_affiliation_strings":["School of Transportation, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073424108","display_name":"Fan Ding","orcid":"https://orcid.org/0000-0001-5482-8290"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Ding","raw_affiliation_strings":["School of Transportation, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107117626","display_name":"Shen Li","orcid":"https://orcid.org/0000-0002-7111-8861"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shen Li","raw_affiliation_strings":["School of Civil Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Civil Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101164983","display_name":"Charlie Ma","orcid":null},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Charlie Ma","raw_affiliation_strings":["School of Transportation, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5079942913"],"corresponding_institution_ids":["https://openalex.org/I76569877"],"apc_list":{"value":4740,"currency":"USD","value_usd":4740},"apc_paid":{"value":4740,"currency":"USD","value_usd":4740},"fwci":4.42,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.999934,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"39","issue":"18","first_page":"2774","last_page":"2787"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/taxis","display_name":"Taxis","score":0.7125907}],"concepts":[{"id":"https://openalex.org/C183373512","wikidata":"https://www.wikidata.org/wiki/Q949618","display_name":"Taxis","level":2,"score":0.7125907},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69615644},{"id":"https://openalex.org/C64093975","wikidata":"https://www.wikidata.org/wiki/Q356677","display_name":"Floating car data","level":3,"score":0.5842728},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5811048},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5760585},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.5325875},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.46554646},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.36939484},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.26509103},{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.2441104},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.22911939},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.15764147},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.15382731},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.111858726},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1111/mice.13179","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13179","source":{"id":"https://openalex.org/S206927758","display_name":"Computer-Aided Civil and Infrastructure Engineering","issn_l":"1093-9687","issn":["1093-9687","1467-8667"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1111/mice.13179","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13179","source":{"id":"https://openalex.org/S206927758","display_name":"Computer-Aided Civil and Infrastructure Engineering","issn_l":"1093-9687","issn":["1093-9687","1467-8667"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.75,"display_name":"Sustainable cities and communities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"52072074"}],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1973943669","https://openalex.org/W2003812729","https://openalex.org/W2021914902","https://openalex.org/W2028507901","https://openalex.org/W2032475541","https://openalex.org/W2036785686","https://openalex.org/W2058632762","https://openalex.org/W2132140174","https://openalex.org/W2460404912","https://openalex.org/W2573587735","https://openalex.org/W2579495707","https://openalex.org/W2582510569","https://openalex.org/W2615673769","https://openalex.org/W2802508687","https://openalex.org/W2886997416","https://openalex.org/W2901504064","https://openalex.org/W2903871660","https://openalex.org/W2904449562","https://openalex.org/W2914743966","https://openalex.org/W2945622688","https://openalex.org/W2956067742","https://openalex.org/W2960253099","https://openalex.org/W2990762146","https://openalex.org/W2996451395","https://openalex.org/W2997848713","https://openalex.org/W3026400623","https://openalex.org/W3039628929","https://openalex.org/W3041279471","https://openalex.org/W3044523339","https://openalex.org/W3080344546","https://openalex.org/W3103720336","https://openalex.org/W3126367810","https://openalex.org/W3129155125","https://openalex.org/W3135165674","https://openalex.org/W3212890323","https://openalex.org/W4280554492","https://openalex.org/W4280595744","https://openalex.org/W4321021801","https://openalex.org/W4321615055","https://openalex.org/W4385245566","https://openalex.org/W4387159219","https://openalex.org/W4388182913","https://openalex.org/W4388430799","https://openalex.org/W994344872"],"related_works":["https://openalex.org/W4387544810","https://openalex.org/W3145095895","https://openalex.org/W2978498151","https://openalex.org/W2946344618","https://openalex.org/W2782837293","https://openalex.org/W2731640799","https://openalex.org/W2594548639","https://openalex.org/W2114323843","https://openalex.org/W1967495148","https://openalex.org/W1946755446"],"abstract_inverted_index":{"Abstract":[0],"Floating":[1],"car":[2],"data":[3,43,52,154],"(FCD),":[4],"characterized":[5],"by":[6],"wide":[7,150],"spatiotemporal":[8,151,177],"coverage,":[9],"low":[10],"collection":[11],"cost,":[12],"and":[13,48,72,122,156,160,212,238],"immunity":[14],"to":[15,29,40,84,173,241],"adverse":[16],"weather":[17],"conditions,":[18],"are":[19],"one":[20],"of":[21,53,70,117,143,179],"the":[22,54,61,66,73,76,91,101,115,123,140,165,175,204,218],"key":[23],"approaches":[24],"for":[25,114,127,170,196,230],"intelligent":[26],"transportation":[27],"systems":[28],"obtain":[30],"real\u2010time":[31],"urban":[32,58,146],"road":[33,55,102,108,129,180,234],"network":[34,181,188,235],"traffic":[35,182,197,236],"information.":[36],"The":[37,153,200],"research":[38,62],"aims":[39],"utilize":[41],"GPS":[42],"from":[44],"taxis":[45,144],"in":[46,145,210,223],"Shanghai":[47],"vector":[49,109],"geographic":[50,110],"information":[51],"network,":[56],"with":[57,100,148],"expressways":[59,71],"as":[60],"focus.":[63],"Based":[64],"on":[65,75,90,107,190],"different":[67],"driving":[68],"characteristics":[69,142],"vehicles":[74,88],"ramps":[77],"below,":[78],"a":[79,149,184,227],"clustering":[80],"analysis":[81],"is":[82,104,131,194],"employed":[83,195],"determine":[85],"all":[86],"floating":[87],"traveling":[89],"target":[92],"road.":[93],"Furthermore,":[94],"an":[95],"adaptive":[96],"buffer":[97],"zone":[98],"consistent":[99],"orientation":[103],"established":[105],"based":[106,189],"data.":[111],"This":[112,136],"allows":[113],"extraction":[116,168],"FCD":[118,220],"within":[119],"segmented":[120],"areas,":[121],"average":[124],"vehicle":[125],"speed":[126],"that":[128,203,217],"segment":[130],"obtained":[132],"through":[133],"weighted":[134],"calculations.":[135],"method":[137,169,206,222],"fully":[138],"exploits":[139],"natural":[141],"areas":[147],"distribution.":[152],"effectiveness":[155],"coverage":[157],"reach":[158],"90.2%":[159],"85.7%,":[161],"respectively,":[162],"significantly":[163],"surpassing":[164],"traditional":[166],"grid\u2010based":[167],"FCD.":[171],"Additionally,":[172],"capture":[174],"long\u2010term":[176,213,242],"dependencies":[178],"states,":[183],"spatial\u2013temporal":[185,191],"autoformer":[186],"(STAF)":[187],"sequence":[192],"autocorrelation":[193],"state":[198],"prediction.":[199,214],"results":[201],"indicate":[202],"STAF":[205],"demonstrates":[207],"good":[208],"performance":[209],"medium\u2010":[211,240],"We":[215],"believe":[216],"proposed":[219],"mining":[221],"this":[224],"paper":[225],"provides":[226],"new":[228],"approach":[229],"efficiently":[231],"extracting":[232],"large\u2010scale":[233],"states":[237],"conducting":[239],"predictions.":[243]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392291935","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":4}],"updated_date":"2025-03-30T20:00:58.050347","created_date":"2024-03-05"}