{"id":"https://openalex.org/W3082443559","doi":"https://doi.org/10.1111/exsy.12633","title":"A hybrid model for financial time\u2010series forecasting based on mixed methodologies","display_name":"A hybrid model for financial time\u2010series forecasting based on mixed methodologies","publication_year":2020,"publication_date":"2020-09-02","ids":{"openalex":"https://openalex.org/W3082443559","doi":"https://doi.org/10.1111/exsy.12633","mag":"3082443559"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1111/exsy.12633","pdf_url":null,"source":{"id":"https://openalex.org/S72232612","display_name":"Expert Systems","issn_l":"0266-4720","issn":["0266-4720","1468-0394"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056539325","display_name":"Zhidan Luo","orcid":null},"institutions":[{"id":"https://openalex.org/I146563203","display_name":"University of International Business and Economics","ror":"https://ror.org/05khqpb71","country_code":"CN","type":"education","lineage":["https://openalex.org/I146563203"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhidan Luo","raw_affiliation_strings":["School of Statistics, University of International Business and Economics, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Statistics, University of International Business and Economics, Beijing, China","institution_ids":["https://openalex.org/I146563203"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022490129","display_name":"Wei Guo","orcid":"https://orcid.org/0009-0003-5498-8413"},"institutions":[{"id":"https://openalex.org/I146563203","display_name":"University of International Business and Economics","ror":"https://ror.org/05khqpb71","country_code":"CN","type":"education","lineage":["https://openalex.org/I146563203"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Guo","raw_affiliation_strings":["School of Statistics, University of International Business and Economics, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Statistics, University of International Business and Economics, Beijing, China","institution_ids":["https://openalex.org/I146563203"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102863751","display_name":"Qingfu Liu","orcid":"https://orcid.org/0000-0003-4252-2360"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Qingfu Liu","raw_affiliation_strings":["Institute for Financial Studies, Fudan University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Institute for Financial Studies, Fudan University, Shanghai, China","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101477311","display_name":"Zhengjun Zhang","orcid":"https://orcid.org/0000-0003-2615-1539"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"education","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhengjun Zhang","raw_affiliation_strings":["Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA","institution_ids":["https://openalex.org/I135310074"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5102863751"],"corresponding_institution_ids":["https://openalex.org/I24943067"],"apc_list":{"value":3860,"currency":"USD","value_usd":3860,"provenance":"doaj"},"apc_paid":null,"fwci":2.84,"has_fulltext":false,"cited_by_count":23,"citation_normalized_percentile":{"value":0.853157,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"38","issue":"2","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11059","display_name":"Market Dynamics and Volatility","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6544911}],"concepts":[{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.7108506},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70607346},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6544911},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5818668},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.57977104},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.57277316},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5600454},{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.5399193},{"id":"https://openalex.org/C158946198","wikidata":"https://www.wikidata.org/wiki/Q131187","display_name":"Taylor series","level":2,"score":0.5188281},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.44247136},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.3509791},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17532507},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.14503092},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.06886637},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1111/exsy.12633","pdf_url":null,"source":{"id":"https://openalex.org/S72232612","display_name":"Expert Systems","issn_l":"0266-4720","issn":["0266-4720","1468-0394"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"71991471"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61973084"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"71871066"}],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1554555474","https://openalex.org/W1986061781","https://openalex.org/W1986078433","https://openalex.org/W1988845048","https://openalex.org/W1999996900","https://openalex.org/W2000322714","https://openalex.org/W2007221293","https://openalex.org/W2012079387","https://openalex.org/W2017116130","https://openalex.org/W2027495417","https://openalex.org/W2032986538","https://openalex.org/W2037277168","https://openalex.org/W2050147446","https://openalex.org/W2055130908","https://openalex.org/W2064408844","https://openalex.org/W2064531225","https://openalex.org/W2085444045","https://openalex.org/W2088837885","https://openalex.org/W2117014758","https://openalex.org/W2120390927","https://openalex.org/W2153787847","https://openalex.org/W2176313025","https://openalex.org/W2202574419","https://openalex.org/W2290404289","https://openalex.org/W2300985461","https://openalex.org/W2355299656","https://openalex.org/W2383848514","https://openalex.org/W2484524103","https://openalex.org/W2593740144","https://openalex.org/W2605444720","https://openalex.org/W2606134604","https://openalex.org/W2607504702","https://openalex.org/W2781482253","https://openalex.org/W2792444291","https://openalex.org/W2912185124","https://openalex.org/W3009739946","https://openalex.org/W3123131236","https://openalex.org/W3125493251","https://openalex.org/W4249977138"],"related_works":["https://openalex.org/W4386362517","https://openalex.org/W4313123484","https://openalex.org/W4312561791","https://openalex.org/W4312309719","https://openalex.org/W3175321409","https://openalex.org/W3115491726","https://openalex.org/W2980748541","https://openalex.org/W2974356760","https://openalex.org/W2389894046","https://openalex.org/W2215717369"],"abstract_inverted_index":{"Abstract":[0],"This":[1],"paper":[2],"proposes":[3],"a":[4,23],"hybrid":[5,115,120],"model":[6],"that":[7,112],"combines":[8],"ensemble":[9],"empirical":[10,103],"mode":[11],"decomposition":[12],"(EEMD),":[13],"autoregressive":[14],"integrated":[15],"moving":[16],"average":[17],"(ARIMA),":[18],"and":[19,75],"Taylor":[20,66],"expansion":[21,67],"using":[22],"tracking":[24],"differentiator":[25],"to":[26],"forecast":[27],"financial":[28,33,107],"time":[29,34,108],"series.":[30],"Specifically,":[31],"the":[32,44,53,58,64,73,81,95,100,118],"series":[35,109],"is":[36,50,61,91],"decomposed":[37],"by":[38,52,63,93],"EEMD":[39],"into":[40,80],"some":[41],"subseries.":[42,86,101],"Then,":[43],"linear":[45,54,74],"portion":[46,60],"of":[47,72,84,98],"each":[48,85],"subseries":[49],"forecasted":[51],"ARIMA":[55],"model,":[56],"while":[57],"nonlinear":[59,65,76],"predicted":[62,82],"model.":[68],"The":[69,87,102],"forecasting":[70],"results":[71,104],"models":[77,121],"are":[78],"combined":[79],"result":[83,90],"final":[88],"prediction":[89,96],"obtained":[92],"combining":[94],"values":[97],"all":[99],"with":[105],"real":[106],"data":[110],"demonstrate":[111],"this":[113,124],"new":[114],"approach":[116],"outperforms":[117],"benchmark":[119],"considered":[122],"in":[123],"paper.":[125]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3082443559","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":4}],"updated_date":"2024-12-29T02:08:50.685839","created_date":"2020-09-08"}