{"id":"https://openalex.org/W3110864318","doi":"https://doi.org/10.1109/wincom50532.2020.9272470","title":"Deep Learning Based Prediction of Signal-to-Noise Ratio (SNR) for LTE and 5G Systems","display_name":"Deep Learning Based Prediction of Signal-to-Noise Ratio (SNR) for LTE and 5G Systems","publication_year":2020,"publication_date":"2020-10-28","ids":{"openalex":"https://openalex.org/W3110864318","doi":"https://doi.org/10.1109/wincom50532.2020.9272470","mag":"3110864318"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wincom50532.2020.9272470","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084954350","display_name":"Thinh Ngo","orcid":"https://orcid.org/0000-0002-4986-6310"},"institutions":[{"id":"https://openalex.org/I45438204","display_name":"The University of Texas at San Antonio","ror":"https://ror.org/01kd65564","country_code":"US","type":"funder","lineage":["https://openalex.org/I45438204"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Thinh Ngo","raw_affiliation_strings":["Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, USA"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, USA","institution_ids":["https://openalex.org/I45438204"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024204464","display_name":"Brian Kelley","orcid":"https://orcid.org/0000-0001-5698-1571"},"institutions":[{"id":"https://openalex.org/I45438204","display_name":"The University of Texas at San Antonio","ror":"https://ror.org/01kd65564","country_code":"US","type":"funder","lineage":["https://openalex.org/I45438204"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Brian Kelley","raw_affiliation_strings":["Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, USA"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, USA","institution_ids":["https://openalex.org/I45438204"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5114027757","display_name":"Paul Rad","orcid":null},"institutions":[{"id":"https://openalex.org/I45438204","display_name":"The University of Texas at San Antonio","ror":"https://ror.org/01kd65564","country_code":"US","type":"funder","lineage":["https://openalex.org/I45438204"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul Rad","raw_affiliation_strings":["Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, USA"],"affiliations":[{"raw_affiliation_string":"Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, USA","institution_ids":["https://openalex.org/I45438204"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.13,"has_fulltext":false,"cited_by_count":23,"citation_normalized_percentile":{"value":0.859501,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12131","display_name":"Wireless Signal Modulation Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12131","display_name":"Wireless Signal Modulation Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10936","display_name":"Millimeter-Wave Propagation and Modeling","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13905","display_name":"Telecommunications and Broadcasting Technologies","score":0.9859,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7702659},{"id":"https://openalex.org/C13944312","wikidata":"https://www.wikidata.org/wiki/Q7512748","display_name":"Signal-to-noise ratio (imaging)","level":2,"score":0.5988525},{"id":"https://openalex.org/C103824480","wikidata":"https://www.wikidata.org/wiki/Q185889","display_name":"Time domain","level":2,"score":0.49791622},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.49051136},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4465053},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44272944},{"id":"https://openalex.org/C169334058","wikidata":"https://www.wikidata.org/wiki/Q353292","display_name":"Additive white Gaussian noise","level":3,"score":0.43208727},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.4028534},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.35714462},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32642764},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14710268},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wincom50532.2020.9272470","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1944454846","https://openalex.org/W2087573023","https://openalex.org/W2108740176","https://openalex.org/W2131616141","https://openalex.org/W2272847350","https://openalex.org/W2346675370","https://openalex.org/W2552069719","https://openalex.org/W2734408173","https://openalex.org/W2773170971","https://openalex.org/W2886362979","https://openalex.org/W2886374543","https://openalex.org/W2948490758","https://openalex.org/W2963101290","https://openalex.org/W2963190722","https://openalex.org/W2966038277","https://openalex.org/W2979839315","https://openalex.org/W3036337021"],"related_works":["https://openalex.org/W4377082691","https://openalex.org/W4293226380","https://openalex.org/W4200289829","https://openalex.org/W3119031021","https://openalex.org/W2791735244","https://openalex.org/W2349688938","https://openalex.org/W2149798235","https://openalex.org/W2149295870","https://openalex.org/W2114361689","https://openalex.org/W2101505280"],"abstract_inverted_index":{"Deep":[0],"learning":[1],"(DL)":[2],"is":[3,66,78,102],"applied":[4],"to":[5,80,87,111],"predict":[6],"signal-to-noise":[7],"ratio":[8],"(SNR)":[9],"in":[10,17,135],"de":[11],"facto":[12],"LTE":[13,136],"and":[14,25,34,39,57,75,96,108,121,137,143,159,180],"5G":[15,138],"systems":[16,139],"a":[18,181],"non-data-aided":[19],"(NDA)":[20],"manner.":[21],"Various":[22],"channel":[23],"conditions":[24],"impairments":[26],"are":[27,43,90],"considered,":[28],"including":[29],"modulation":[30],"types,":[31],"path":[32],"delays,":[33],"Doppler":[35],"shifts.":[36],"Both":[37],"time-domain":[38,165],"frequency-domain":[40],"signal":[41],"grids":[42],"evaluated":[44],"as":[45,68],"inputs":[46],"for":[47,152],"SNR":[48,70,91,134,150,153],"prediction.":[49,99],"A":[50],"combination":[51],"of":[52,133,155,161,170,178,183],"convolutional":[53],"neural":[54],"network":[55],"(CNN)":[56],"long":[58],"short":[59],"term":[60],"memory":[61],"(LSTM)":[62],"-":[63,65],"CNN-LSTM":[64],"used":[67],"the":[69],"predictor.":[71],"Learning":[72],"both":[73],"spatial":[74],"temporal":[76],"features":[77],"known":[79],"improve":[81],"DL":[82,109,130],"prediction":[83,132,151],"accuracy.":[84],"Techniques":[85],"employed":[86],"enhance":[88],"performance":[89],"range/resolution":[92],"manipulation,":[93],"binary":[94],"prediction,":[95],"multiple":[97],"input":[98],"Computer":[100],"simulation":[101],"conducted":[103],"using":[104],"MATLAB":[105],"LTE,":[106],"5G,":[107],"toolboxes":[110],"generate":[112],"OFDM":[113],"signals,":[114],"model":[115],"fading":[116],"channels":[117],"with":[118,127],"AWGN":[119],"noise,":[120],"construct":[122],"CNN-LSTM.":[123],"Simulation":[124],"results":[125],"show,":[126],"off-line":[128],"training,":[129],"based":[131],"has":[140,167],"better":[141],"accuracy":[142,169],"latency":[144,182],"than":[145],"traditional":[146],"estimation":[147],"techniques.":[148],"Specifically,":[149],"range":[154],"[-4,":[156],"32]":[157],"dB":[158,163],"resolution":[160],"2":[162],"utilizing":[164],"signals":[166],"an":[168],"100%,":[171],"hence":[172],"normalized":[173],"mean":[174],"square":[175],"error":[176],"(NMSE)":[177],"zero,":[179],"1":[184],"millisecond":[185],"or":[186],"less.":[187]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3110864318","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":4}],"updated_date":"2025-04-30T14:11:22.714062","created_date":"2020-12-21"}